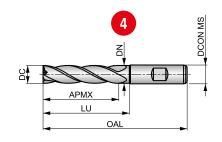
МОНОЛИТНЫЕ ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА И БЫСТРОРЕЖУЩЕЙ СТАЛИ

		ФРЕЗЕРОВАНИЕ – СОДЕРЖАНИЕ
A 6		ГРУППЫ ОБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ WMG ISO 13399
12	ЫĒ	инструкция
19	МОНОЛИТНЫЕ ФРЕЗЫ	ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА
117	НОЛИТІ ФРЕЗЫ	ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ
201	M	ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ
<u> 212</u>		БОРФРЕЗЫ
<u> 292</u>		РЕЗЬБОФРЕЗЫ
A 314		инструкция
□ 326	M	НАВИГАТОР
<u></u> 347	ИНАМИ	ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПЛОСКОСТЕЙ
407	IACT	ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПАЗОВ И УСТУПОВ
477	П	ДЛИННОКРОМОЧНЫЕ ФРЕЗЫ
<u></u> 506	1PIM	ДИСКОВЫЕ ФРЕЗЫ
□ 519	со сменными плас	копировальные фрезы
<u></u> 611	OCA	высокоподачные фрезы
<u></u> 643	3bl C	ФРЕЗЫ ДЛЯ ОБРАБОТКИ ФАСОК И Т-ОБРАЗНЫХ ПАЗОВ
<u></u> 665	ФРЕЗЫ	ДРУГИЕ ПЛАСТИНЫ
<u></u> 689		ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ


DORMER

Фреза из порошковой быстрорежущей стали с кобальтом удлиненной конструкции

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 30° и геометрию для фрезерования преимущественно мягких сталей, цветных и титановых сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

HSS-E

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 46 C	■ 52 C	■ 54 C	■ 40 C	■ 35 C	Z 32 C	Z 26 B	■ 19 B	■ 14 C	■ 12 C	Z 12 C	∠ 10 B	Z 25 C	■ 19 C
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
Z 14 C	∠ 49 C	∠ 40 C	Z 32 B	Z 44 C	Z 33 C	Z 27 A	∠ 40 B	∠ 30 B	Z 22 B	∠ 19 A	∠ 16 A	∠ 46 B	Z 34 B
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	/ N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1
Z 27 B	≥ 81 E	Z 60 D	Z 41 D	Z 41 C	Z 37 C	Z 26 C	■ 43 C	■ 25 C	■ 13 C	∠ 43 C	■ 25 B	Z 20 B	∠ 13 A
S3.1	S4.1												
∠ 10 A	∠ 8 A												

06	DC	DC	DCON MS	APMX	OAL	NOF	LU	DN
Обозначение								
8	(дюйм)	(MM)	(MM)	(MM)	9 (MM)		(MM)	(MM)
C2732.0	-	2.00	6.00	10.00	54.0	4	-	-
C2732.5	-	2.50	6.00	12.00	56.0	4	_	_
C2733.0	-	3.00	6.00	12.00	56.0	4	-	-
C2731/8 ²⁾	1/8	3.18	6.00	15.00	59.0	4	-	_
C2733.5	-	3.50	6.00	15.00	59.0	4	_	_
C2734.0	-	4.00	6.00	19.00	63.0	4	_	_
C2734.5	-	4.50	6.00	19.00	63.0	4	_	_
C2733/16 ²⁾	3/16	4.76	6.00	24.00	68.0	4	_	_
C2735.0	-	5.00	6.00	24.00	68.0	4	_	_
C2735.5	-	5.50	6.00	24.00	68.0	4	-	_
C2736.0	-	6.00	6.00	24.00	68.0	4	_	_
C2731/4 ²⁾	1/4	6.35	10.00	30.00	80.0	4	_	_
C2737.0	-	7.00	10.00	30.00	80.0	4	-	_
C2738.0	-	8.00	10.00	38.00	88.0	4	_	_
C2739.0	-	9.00	10.00	38.00	88.0	4	_	_
C2733/8 ²⁾	3/8	9.52	10.00	45.00	95.0	4	54.50	9.50
C27310.0	-	10.00	10.00	45.00	95.0	4	54.50	9.50
C27311.0	-	11.00	12.00	45.00	102.0	4	-	_
C27312.0	-	12.00	12.00	53.00	110.0	4	64.50	11.50
C2731/2 ²⁾	1/2	12.70	12.00	53.00	110.0	4	64.50	11.50
C27313.0	-	13.00	12.00	53.00	110.0	4	64.50	11.50
C27314.0	-	14.00	12.00	53.00	110.0	4	64.50	11.50
C27315.0	-	15.00	12.00	53.00	110.0	4	64.50	11.50
C2735/8 ²⁾	5/8	15.88	16.00	63.00	123.0	4	74.50	15.50
C27316.0	_	16.00	16.00	63.00	123.0	4	74.50	15.50

МОНОЛИТНЫЕ ФРЕЗЫ – ОБЗОР

Поз.	Описание	Поз.	Описание
1	Серия	6	Технологические возможности
2	Описание	7	Область применения, рекомендуемая скорость резания и индекс подачи
3	Изображение	8	Обозначение
4	Схематический чертеж	9	Размеры
5	Особенности		

МОНОЛИТНЫЕ ФРЕЗЫ – ПИКТОГРАММЫ

Применение

Основное применение

Возможное применение

Материал инструмента

НМ	Твердый сплав	HSS-E	Быстрорежущая сталь с кобальтом
HSS-E PM	Порошковая быстрорежущая сталь с кобальтом	HSS	Быстрорежущая сталь

Профиль режущих кромок

N	Для общего применения и обработки материалов низкой или высокой прочности	NR	Стружколомающая геометрия с крупным шагом и скругленным профилем	Крупный шаг
W	Для обработки мягких цветных сплавов	HRA	Стружколомающая геометрия с мелким шагом и ассиметричным профилем	Мелкий шаг
FS	Стружколомающая геометрия для получистовой обработки	NRA	Стружколомающая геометрия с крупным шагом и ассиметричным профилем	
NF	Стружколомающая геометрия с крупным шагом	W NRA	Стружколомающая геометрия с крупным шагом для обработки цветных сплавов	

Количество зубьев (Число стружечных канавок)

NOF 1	1 зуб	NOF 4-5	45 зубьев	NOF 16-24	1624 зуба
NOF 2	2 зуба	NOF 5	5 зубьев	28-44 NOF	2844 зуба
NOF 3	3 зуба	NOF 4-6	46 зубьев	32-100 NOF	32100 зубьев
NOF 3#	3 зуба с переменным шагом	NOF 4-8	48 зубьев	48-200 NOF	48200 зубьев
NOF 3-4	34 зуба	NOF 6-8	68 зубьев	100-140 NOF	100140 зубьев
NOF 3-5	35 зубьев	NOF 6-12	612 зубьев	110-180 NOF	110180 зубьев
NOF 3-6	36 зубьев	NOF 8	8 зубьев	130-220 NOF	130220 зубьев
NOF 4	4 зуба	NOF 8-12	812 зубьев	160-350 NOF	160350 зубьев
NOF 4#	4 зуба с переменным шагом	NOF 10-12	1012 зубьев		

МОНОЛИТНЫЕ ФРЕЗЫ – ПИКТОГРАММЫ Длина режущей части Особо короткая Средняя Особо длинная Короткая Длинная Угол подъема стружечной канавки λ 25° λ 40° λ Переменный угол подъема спирали Спираль с углом 25° Спираль с углом 40° # λ 0° λ 28° λ 45° Прямые канавки с углом 0° Спираль с углом 28° Спираль с углом 45° λ 10° λ 30° λ 50° Спираль с углом 10° Спираль с углом 30° Спираль с углом 50°

Спираль с углом 34°

Спираль с углом 35°

λ 34°

λ 35°

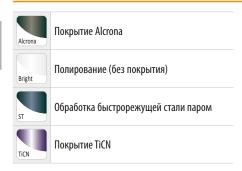
Радиальный передний угол (GAMF)

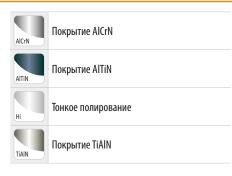
Спираль с углом 12°

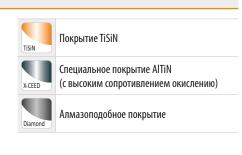
Спираль с углом 15°

λ 12°

λ 15°


γ -26°	Радиальный передний угол -26°	γ 5°	Радиальный передний угол 5°	γ 13°	Радиальный передний угол 13°
γ -10°	Радиальный передний угол -10°	γ 7°	Радиальный передний угол 7°	γ 15°	Радиальный передний угол 15°
γ -6°	Радиальный передний угол -6°	γ 8°	Радиальный передний угол 8°	γ 18°	Радиальный передний угол 18°
γ 0°	Радиальный передний угол 0°	γ 9°	Радиальный передний угол 9°	γ 20°	Радиальный передний угол 20°
γ 3°	Радиальный передний угол 3°	γ 10°	Радиальный передний угол 10°	γ 25°	Радиальный передний угол 25°
γ 4°	Радиальный передний угол 4°	γ 12°	Радиальный передний угол 12°		


Хвостовик


Uилиндрический хвостовик DIN 1835A	ВИЗ 1835D Хвостовик с резьбой DIN 1835D	ом 6535HA Цилиндрический хвостовик DIN 6535 HA
Хвостовик Weldon DIN 1835В или с резьбой D	Хвостовик Weldon DIN 1835В	DIN 6535HB ХВОСТОВИК Weldon DIN 6535 HB

МОНОЛИТНЫЕ ФРЕЗЫ – ПИКТОГРАММЫ

Покрытие

Допуск на диаметр резания

DC	d11 — Стандартный промышленный допуск
d11	(ширина поля допуска зависит от диаметра)
DC	e8 — Стандартный промышленный допуск
e8	(ширина поля допуска зависит от диаметра)
DC	h9 — Стандартный промышленный допуск
h9	(ширина поля допуска зависит от диаметра)
DC	h10 — Стандартный промышленный допуск
h10	(ширина поля допуска зависит от диаметра)

DC k10	k10 — Стандартный промышленный допуск (ширина поля допуска зависит от диаметра)
DC k12	k12 — Стандартный промышленный допуск (ширина поля допуска зависит от диаметра)

Направление обработки

Радиальное

Радиальное, Диагональное

Радиальное, Диагональное, Осевое

Радиальное

Стандарт инструмента

BS 122/4	BS 122/4 Стандарт на фрезы с резьбовым хвостовиком	DIN 1880 Стандарт на насадные цилиндрические фрезы	DIN 851	DIN 851 Стандарт на фрезы для обработки Т-образных пазов
DIN 1833C	DIN 1833C Стандарт на фрезы для обработки пазов типа "ласточкин хвост"	DIN 327D Стандарт на фрезы для обработки пазов	DIN 885A	DIN 885A Стандарт на дисковые трехсторонние фрезы
DIN 1833D	DIN 1833D Стандарт на фрезы для обработки пазов типа обратный "ласточкин хвост"	DIN 844К Стандарт на концевые фрезы	DIN 6527K	DIN 6527К Стандарт на фрезы из твердого сплава
DIN 1837	DIN 1837 Стандарт на дисковые фрезы с мелким шагом	DIN 844L Стандарт на концевые фрезы из быстрорежущей стали	DIN 6527L	DIN 6527L Стандарт на фрезы из твердого сплава
DIN 1838	DIN 1838 Стандарт на дисковые фрезы с крупным шагом	DIN 850 Стандарт на фрезы для обработки шпоночных пазов	DORMER	DORMER Стандарт

МОНОЛИТНЫЕ ФРЕЗЫ – ПИКТОГРАММЫ

Внутренний подвод СОЖ

Внутренний подвод СОЖ

Технологические возможности

Фрезерование глубоких уступов

Фрезерование глубоких пазов

Фрезерование неглубоких пазов

Фрезерование неглубоких уступов

Фрезерование шпоночных пазов Р9

Врезание под углом

Плунжерное фрезерование

Трохоидальное фрезерование

Фрезерование с засверливанием

Засверливание

Фрезерование с винтовой интерполяцией

Точение фрезерованием

Копировальное фрезерование

Фрезерование плоскостей

Фрезерование фасок

Фрезерование обратных уступов

Фрезерование Т-образных пазов

Фрезерование пазов типа "ласточкин хвост"

Фрезерование пазов типа обратный "ласточкин хвост"

Фрезерование пазов под сегментную шпонку

Отрезка труб дисковой фрезой

Отрезка прутков дисковой фрезой

DORMER > PRAMET

MUHAR 505/100TEKA

Всегда возвращаетесь к одним и тем же разделам наших каталогов? Наше приложение Library позволяет сохранять страницы каталогов и брошюр для быстрого использования в любое время. **Simply Reliable.**

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА – МАТЕРИАЛ ИНСТРУМЕНТА И ПОКРЫТИЕ

Материал инструмента

Твердый сплав

HM

Композитный материал, состоящий из твердых карбидов и металлической связки, полученный методом порошковой металлургии. Основу составляют карбиды вольфрама (WC), которые определяют твердость материала. Дополнительные кубические карбиды тантала (TaC), титана (TiC) и ниобия (NbC) дополняют карбиды вольфрама (WC) для получения нужных эксплуатационных свойств. Кобальт (Co) выступает в роли связки для создания прочности твердого сплава.

Твердый сплав характеризуется высокой прочностью на сжатие, твердостью и износостойкостью при ограниченной прочности на растяжение и изгиб. Твердый сплав используется в метчиках, развертках, фрезах и резьбофрезах.

Обработка поверхности

Полирование (без покрытия)

Непокрытые полированные поверхности снижают вероятность налипания стружки и позволяют сохранить остроту режущих кромок для обработки вязких материалов заготовок.

Тонкое полирование

Тонкое полирование значительно снижает вероятность налипания стружки при обработке особо вязких цветных сплавов, улучшая отвод стружки и повышая стойкость инструмента.

Покрытие

Покрытие AlCrN

Покрытие Alcrona (AlCrN) обычно используется для фрез и имеет два уникальных свойства: высокая красностойкость и сопротивление окислению. При использовании режущего инструмента в условиях высоких термических и механических нагрузок такое покрытие позволяет получить исключительную износостойкость. Для разного инструмента и применения доступно несколько вариантов такого покрытия.

Покрытие TiSiN

Покрытие TiSiN разработано для экстремальных условий резания твердых материалов заготовок с высокой скоростью. Это многослойное покрытие имеет нанокомпозитный наружный слой с кристаллами Si_3N_4 в матрице TiN для защиты режущих кромок от высокой температуры, окисления и абразивного износа. Инструмент с покрытием TiSiN можно применять без подвода СОЖ или в условиях минимального подвода СОЖ.

Покрытие TiAIN

Покрытие TiAIN наносится с помощью технологии PVD и обеспечивает высокую прочность и стабильность к окислению. Такие свойства повышают стойкость инструмента, позволяя работать с более высокой производительностью. Инструмент с покрытием TiAIN подходит для применения без СОЖ.

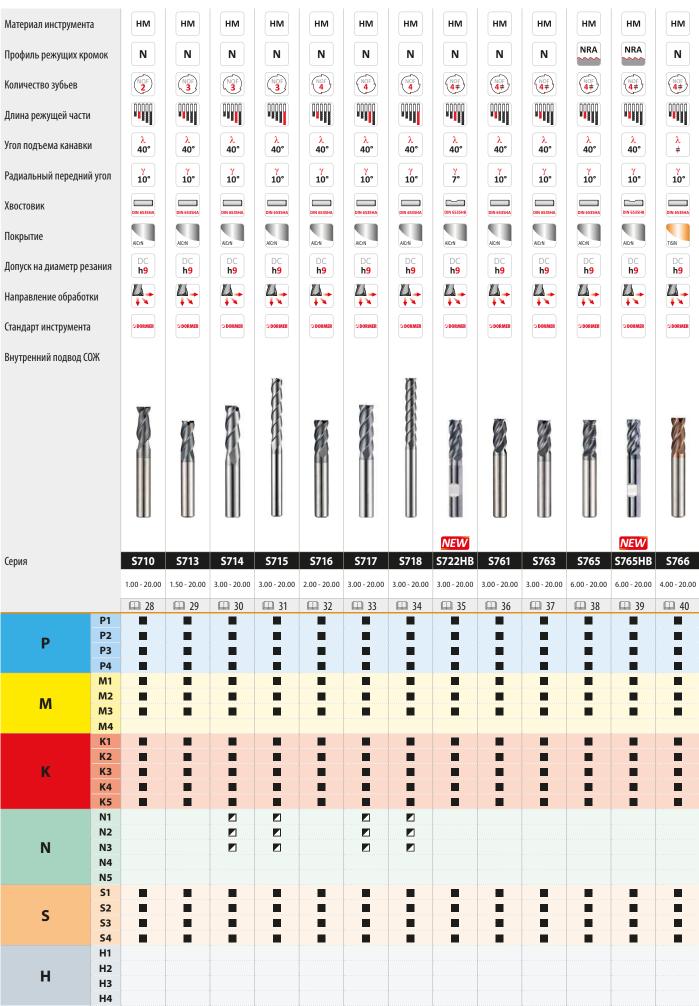
Покрытие X-CEED

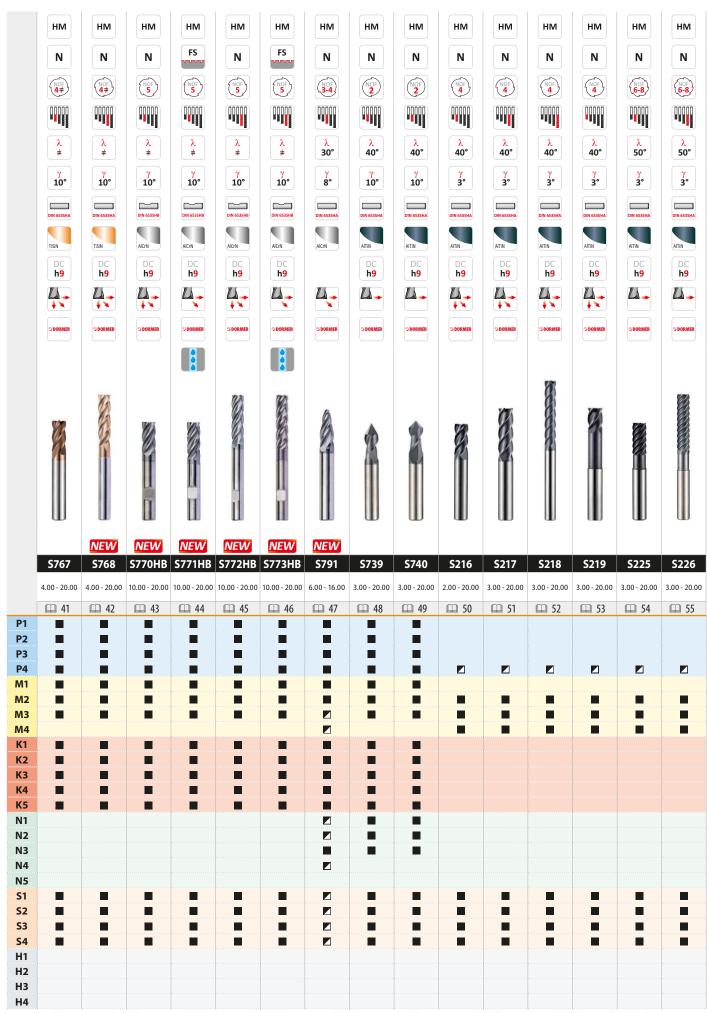
Специальное покрытие X-CEED TiAIN, также известное как Futura-Nano, разработано для повышения красностойкости инструмента и для применения в тяжелых условиях обработки.

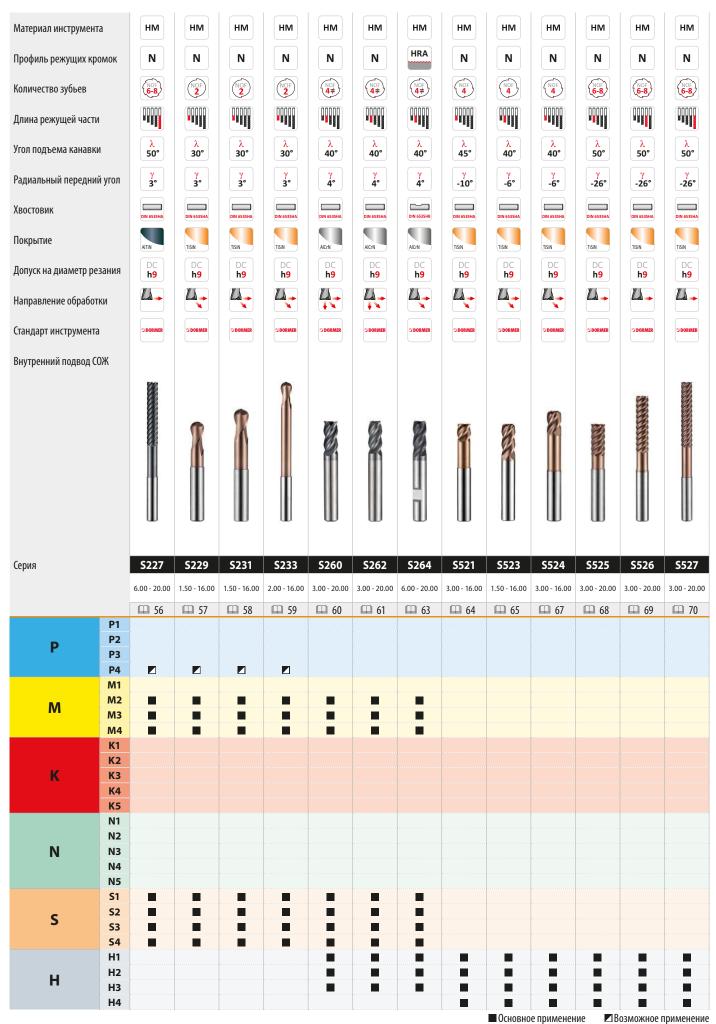
Покрытие AlTiN

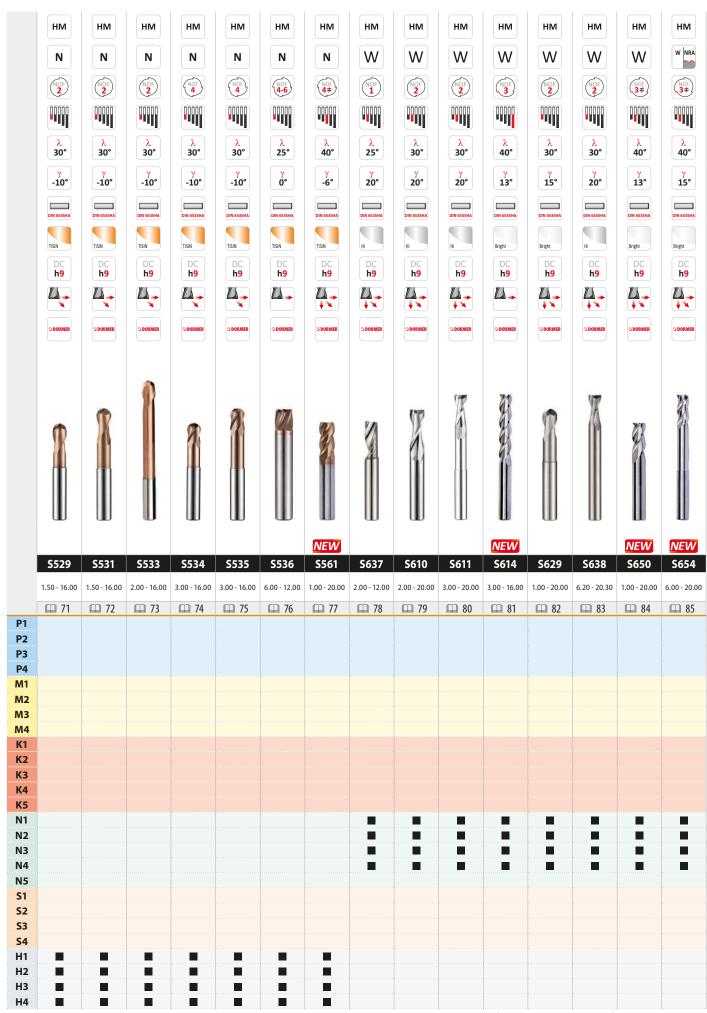
Покрытие AlTiN является обновлением традиционного покрытия TiAlN и имеет высокую прочность, красностойкость и сопротивление окислению.

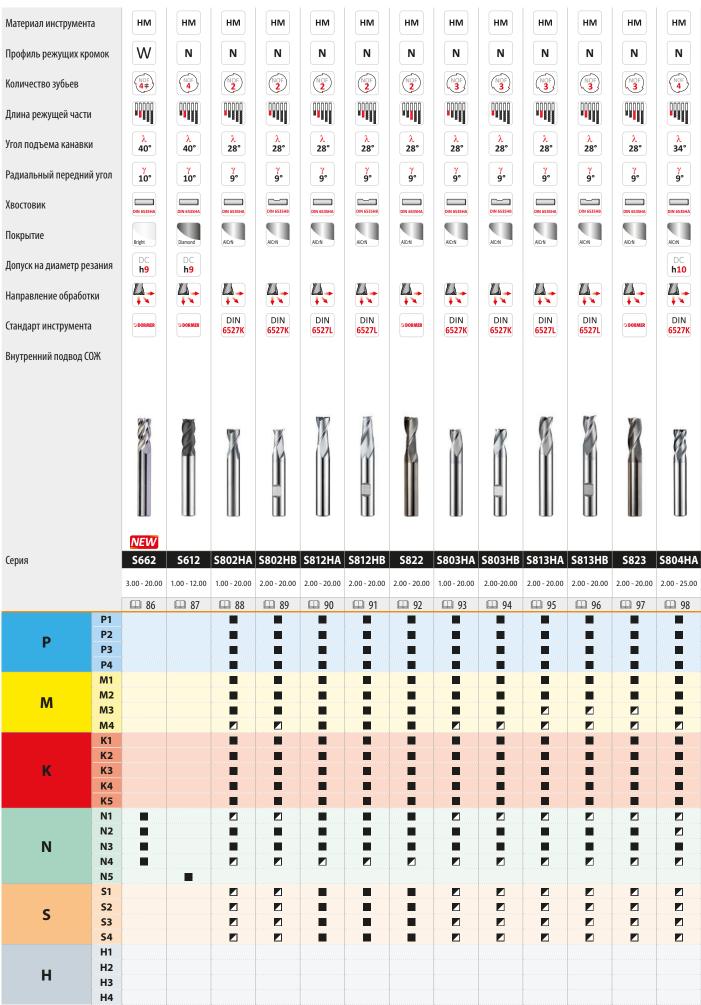
Алмазоподобное покрытие

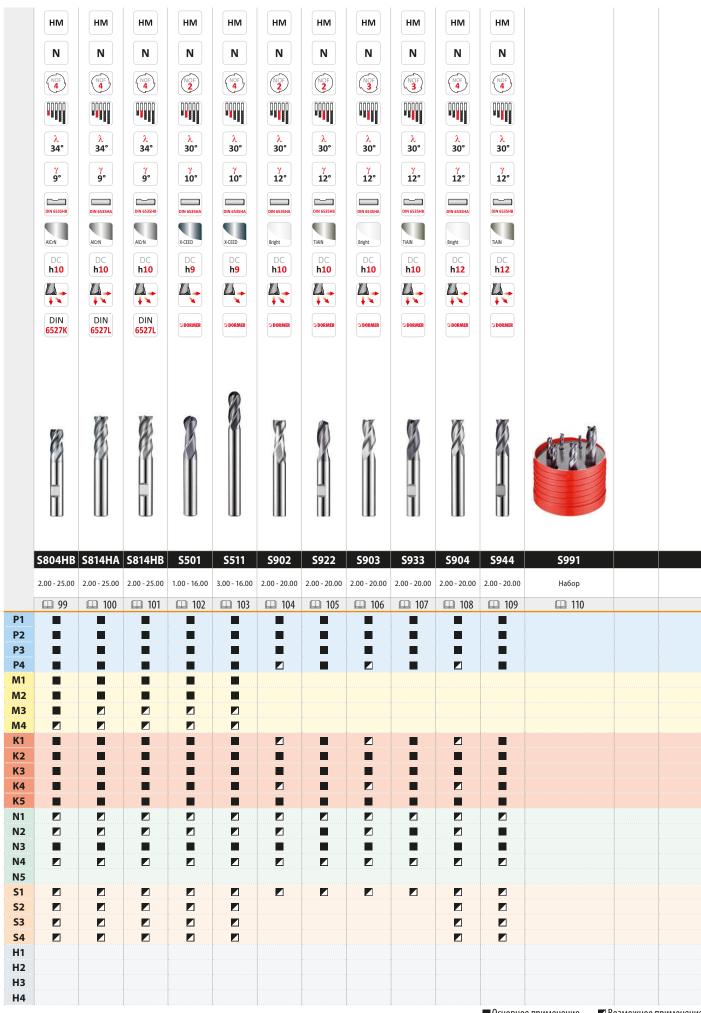

Алмазоподобное покрытие, нанесенное на инструмент из твердого сплава, хорошо смачивается СОЖ и снижает вероятность налипания стружки при обработке графита и вязких цветных сплавов.

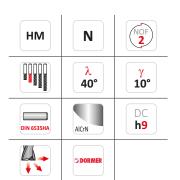

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА – СЕРИИ ФРЕЗ

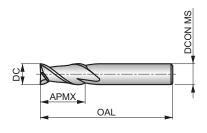

Ассортимент монолитных фрез из твердого сплава позволяет обрабатывать заготовки из большинства материалов.


Серии монолитных фрез из твердого сплава:


Серия	Описание
S7xx	Фрезы с передним углом 710° для обработки конструкционных и нержавеющих сталей средней прочности, чугуна и жаропрочных сплавов средней прочности.
S2xx	Фрезы с передним углом 34° для обработки высоколегированных сталей с пределом прочности 12001620 МПа, нержавеющих сталей с пределом прочности >850 МПа и жаропрочных сплавов с пределом прочности >900 МПа.
S5xx	Фрезы с негативным передним углом для обработки твердых материалов >54 HRC (кроме фрез серии S501 и S511).
S6 xx	Фрезы с большим передним углом для обработки цветных сплавов (фрезы серии S612 для обработки графита).
\$8xx \$501 \$511	Фрезы с передним углом 910° для обработки большинства материалов: конструкционных и нержавеющих сталей низкой и средней прочности, чугуна, цветных сплавов.
S9xx	Фрезы с передним углом 12° для общей обработки мягких материалов: конструкционных сталей, чугуна, цветных сплавов и чистого титана.



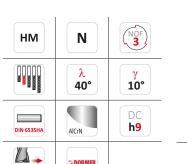


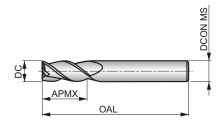


Фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

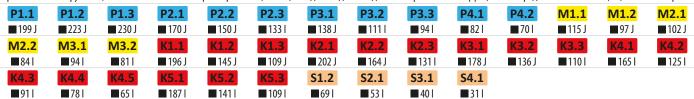
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


	cc.p)c		c 5a . c c.	opoem pesa.	, (,, .	Нете поде	г.ода та г.	pases	44	b. opeges.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	дани, на ни	.a c c.p
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■ 199 K	■ 223 K	■ 230 K	■ 170 K	■ 150 K	■ 133 J	■138 K	■ 111 J	■94 J	■82 J	■70 J	■ 115 K	■ 97 K	■ 102 K
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 84 J	■ 94 J	■81 J	■ 196 K	■ 145 K	■ 109 K	■ 202 K	■164 K	■ 131 J	■ 178 K	■ 136 K	■110 J	■ 165 J	■ 125 J
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
■ 91 J	■78 J	■ 65 J	■187 J	■ 141 J	■ 109 J	■ 69 J	■53 J	■ 40 J	■31 J				

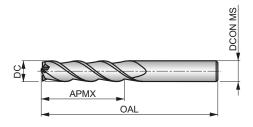

Обозначение	DC	DCON MS	APMX	OAL	NOF
	(мм)	(MM)	(мм)	(мм)	
S7101.0	1.00	3.00	3.00	40.0	2
S7101.5	1.50	3.00	4.50	40.0	2
S7102.0	2.00	3.00	6.50	40.0	2
S7102.5	2.50	3.00	6.50	40.0	2
S7103.0	3.00	6.00	9.00	50.0	2
S7104.0	4.00	6.00	12.00	50.0	2
S7105.0	5.00	6.00	15.00	50.0	2
S7106.0	6.00	6.00	20.00	60.0	2
S7108.0	8.00	8.00	20.00	64.0	2
S71010.0	10.00	10.00	22.00	75.0	2
S71012.0	12.00	12.00	25.00	75.0	2
S71016.0	16.00	16.00	32.00	90.0	2
S71020.0	20.00	20.00	38.00	100.0	2

Фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.



Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

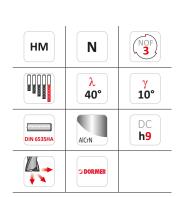

Обозначение	DC	DCON MS	APMX	OAL	NOF
	(мм)	(MM)	(MM)	(мм)	
S7131.5	1.50	4.00	4.50	40.0	3
S7132.0	2.00	4.00	6.50	40.0	3
S7133.0	3.00	3.00	9.00	40.0	3
S7134.0	4.00	4.00	12.00	50.0	3
S7135.0	5.00	5.00	15.00	50.0	3
S7136.0	6.00	6.00	16.00	50.0	3
S7138.0	8.00	8.00	20.00	64.0	3
S71310.0	10.00	10.00	22.00	70.0	3
S71312.0	12.00	12.00	25.00	75.0	3
S71314.0	14.00	14.00	32.00	90.0	3
S71316.0	16.00	16.00	32.00	90.0	3
S71318.0	18.00	18.00	38.00	100.0	3
S71320.0	20.00	20.00	38.00	100.0	3

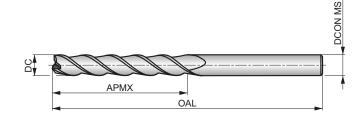
Фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■ 140 J	■ 157 J	■162 J	■ 120 J	■ 106 J	■ 941	■97 J	■ 781	■ 66 l	■ 581	■ 49 I	■81 J	■ 68 J	■ 71 J
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 591	■ 66 l	■ 57 l	■138 J	■ 102 J	■ 77 J	■ 142 J	■ 115 J	■ 921	■ 125 J	■96 J	■ 78 l	■ 1161	■ 88 l
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2
64 I	■ 55 l	■ 46 l	■ 132 I	■99 I	■ 771	Z 249 K	■ 187 K	∠ 125 K	■ 125 J	■ 112 J	■ 81 J	■ 131 J	Z 76 J
N3.3	S1.2	S2.1	S3.1	S4.1									
≥ 39 J	■ 491	■37 I	28 I	22 I									


DCON MS с допуском h6.

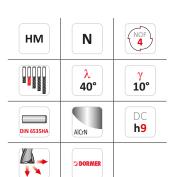

Обозначение	DC	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
S7143.0	3.00	3.00	19.00	60.0	3
S7144.0	4.00	4.00	19.00	60.0	3
S7145.0	5.00	5.00	19.00	60.0	3
S7146.0	6.00	6.00	31.00	75.0	3
S7148.0	8.00	8.00	31.00	75.0	3
S71410.0	10.00	10.00	31.00	75.0	3
S71412.0	12.00	12.00	50.00	100.0	3
S71414.0	14.00	14.00	57.00	125.0	3
S71416.0	16.00	16.00	57.00	125.0	3
S71418.0	18.00	18.00	57.00	125.0	3
S71420.0	20.00	20.00	57.00	125.0	3

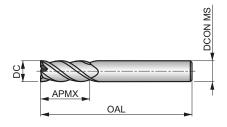
Фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

Р1.1 Р1.2 Р1.3 Р2.1 Р2.2 Р2.3 Р3.1 Р3.2 Р3.3 Р4.1 Р4.2 М1.1 М1.2 М2.1

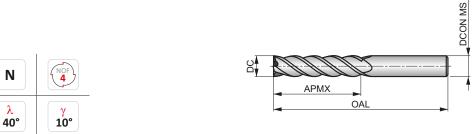

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■88 J	■ 98 J	■ 101 J	■75 J	■ 66 J	■ 591	■ 61 J	■ 49 I	■ 41 l	■ 361	■ 31 l	■ 50 J	■ 42 J	■ 44 J
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 361	41 I	■ 35 l	■86 J	■64 J	■ 48 J	■89 J	■72 J	■ 58 l	■79 J	■ 60 J	49 I	73 I	■ 55 l
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2
■ 40 I	■ 35 l	29 I	■83 I	■ 62 l	■48 I	∠ 178 K	■ 134 K	≥ 90 K	■ 90 J	≥ 80 J	Z 58 J	≥ 94 J	 55 J
N3.3	S1.2	S2.1	S3.1	S4.1									
■ 128 I	301	■ 231	■ 18 I	■ 14 I									


Обозначение	DC	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
\$7153.0	3.00	3.00	25.00	100.0	3
S7154.0	4.00	4.00	31.00	100.0	3
\$7155.0	5.00	5.00	31.00	100.0	3
S7156.0	6.00	6.00	38.00	100.0	3
S7158.0	8.00	8.00	41.00	100.0	3
S71510.0	10.00	10.00	57.00	125.0	3
S71512.0	12.00	12.00	75.00	150.0	3
S71514.0	14.00	14.00	75.00	150.0	3
S71516.0	16.00	16.00	75.00	150.0	3
S71518.0	18.00	18.00	75.00	150.0	3
\$71520.0	20.00	20.00	75.00	150.0	3

Фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


	cc.p,c		c 5110 10111111 ci	opoem pesa.	(,, .	Мете поме	ода .а		.с. поэ ф ф п. щ п. с	ы. өл.р сыс.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.a c c.p
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■ 199 J	■ 223 J	■230 J	■170 J	■ 150 J	■ 133 l	■ 138 J	■ 1111	■ 941	■82 l	■ 701	■115 J	■ 97 J	■ 102 J
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
84 I	■ 941	■81 I	■196 J	■ 145 J	■ 109 J	■ 202 J	■ 164 J	■ 1311	■ 178 J	■ 136 J	■110 I	■165 l	■125 I
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
■ 911	18 78 I	■ 65 I	■ 187 I	■ 141 I	■ 109 I	■ 691	■ 53 l	■40 I	■ 311				

Обозначение	DC	DCON MS	АРМХ	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
S7162.0	2.00	4.00	6.50	40.0	4
S7163.0	3.00	3.00	9.00	40.0	4
S7164.0	4.00	4.00	12.00	50.0	4
S7165.0	5.00	5.00	15.00	50.0	4
S7166.0	6.00	6.00	16.00	50.0	4
S7168.0	8.00	8.00	20.00	64.0	4
S71610.0	10.00	10.00	22.00	70.0	4
S71612.0	12.00	12.00	25.00	75.0	4
S71614.0	14.00	14.00	32.00	90.0	4
S71616.0	16.00	16.00	32.00	90.0	4
S71618.0	18.00	18.00	38.00	100.0	4
S71620.0	20.00	20.00	38.00	100.0	4

Фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 M1.1 M1.2 M2.1 ■ 140 J ■ 157 J ■ 162 J ■ 120 J ■ 106 J ■94 l ■ 97 J **78** I ■ 66 l **■** 58 l **49** I ■ 81 J ■ 68 J ■ 71 J M3.1 K1.3 K3.1 K4.1 **M2.2** M3.2 K1.1 K1.2 **K2.1 K2.2** K3.2 K3.3 K4.2 ■ 138 J **■**591 **■**66 l **■**57 l ■ 102 J ■77 J ■ 142 J ■ 115 J **■** 92 l ■ 125 J ■ 96 J **1**88 **■** 116 l ■88 I K5.2 K4.3 K4.4 N1.1 **N1.2 N1.3 N2.1** N2.2 N2.3 N3.1 N3.2 **■**641 **■** 55 l ■ 46 I ■ 132 I **■**991 **■**77 l **≥** 249 K **Z** 187 K **∠**125 J **■**112 J **■** 131 J **Z**76 J **Z** 125 K **Z**81 J **S4.1** N3.3 **S1.2 S2.1 S3.1**

DCON MS с допуском h6.

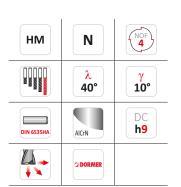
■ 49 l

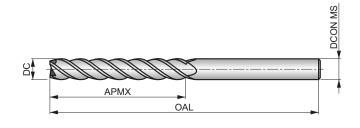
■ 37 l

28 I

22 I

Z 39 J


нм

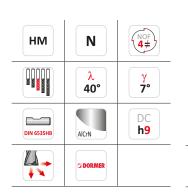

Обозначение	DC	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
S7173.0	3.00	3.00	19.00	60.0	4
S7174.0	4.00	4.00	19.00	60.0	4
S7175.0	5.00	5.00	19.00	60.0	4
S7176.0	6.00	6.00	31.00	75.0	4
S7178.0	8.00	8.00	31.00	75.0	4
S71710.0	10.00	10.00	31.00	75.0	4
S71712.0	12.00	12.00	50.00	100.0	4
S71714.0	14.00	14.00	57.00	125.0	4
S71716.0	16.00	16.00	57.00	125.0	4
S71718.0	18.00	18.00	57.00	125.0	4
S71720.0	20.00	20.00	57.00	125.0	4

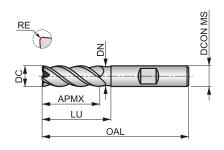
Фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■ 88 J	■ 98 J	■101 J	■ 75 J	■ 66 J	■ 591	■ 61 J	■ 49 l	■41 I	■ 36 l	■ 31 l	■50 J	■ 42 J	■ 44 J
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 361	■ 411	■ 351	■ 86 J	■ 64 J	■ 48 J	■89 J	■72 J	■ 581	■79 J	■ 60 J	49 I	■ 73 l	■ 55 l
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2
■ 40 l	■ 351	29 I	■83 I	■ 621	48 I	■ 178 K	■ 134 K	≥ 90 K	■ 90 J	≥ 80 J	■ 58 J	≥ 94 J	Z 55 J
N3.3	S1.2	S2.1	S3.1	S4.1									
≥ 28 J	■ 301	23 I	■ 181	■ 141									


Обозначение	DC	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
S7183.0	3.00	3.00	25.00	100.0	4
S7184.0	4.00	4.00	31.00	100.0	4
S7185.0	5.00	5.00	31.00	100.0	4
S7186.0	6.00	6.00	38.00	100.0	4
S7188.0	8.00	8.00	41.00	100.0	4
S71810.0	10.00	10.00	57.00	125.0	4
S71812.0	12.00	12.00	75.00	150.0	4
S71814.0	14.00	14.00	75.00	150.0	4
S71816.0	16.00	16.00	75.00	150.0	4
S71818.0	18.00	18.00	75.00	150.0	4
S71820.0	20.00	20.00	75.00	150.0	4


S722HB

Фреза из твердого сплава с радиусом

Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев, уменьшенную шейку и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

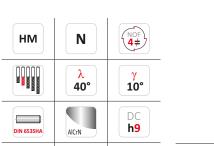
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■ 199 J	■223 J	■ 230 J	■ 170 J	■ 150 J	■133 I	■ 138 J	■111 I	■ 94 l	■ 821	7 0 l	■115 J	■ 97 J	■102 J
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■84 I	■ 941	■ 811	■ 196 J	■ 145 J	■ 109 J	■ 202 J	■ 164 J	■131 I	■178 J	■ 136 J	■110 I	■ 165 I	■ 125 I
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
■ 911	1 781	■ 651	■ 187 I	1 411	■ 1091	■ 691	■ 531	4 0 l	■ 311				

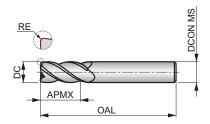
Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(MM)		(мм)	(MM)
S722HB3.0	3.00	0.10	6.00	9.00	50.0	4	15.00	2.80
S722HB4.0	4.00	0.10	6.00	11.00	57.0	4	20.00	3.70
S722HB5.0	5.00	0.10	6.00	13.00	57.0	4	20.00	4.60
S722HB6.0	6.00	0.10	6.00	20.00	60.0	4	25.00	5.50
S722HB8.0	8.00	0.20	8.00	20.00	64.0	4	26.00	7.40
S722HB10.0	10.00	0.20	10.00	27.00	70.0	4	32.00	9.20
S722HB12.0	12.00	0.20	12.00	26.00	83.0	4	37.00	11.00
S722HB14.0	14.00	0.20	14.00	26.00	83.0	4	37.00	13.00
S722HB16.0	16.00	0.20	16.00	32.00	92.0	4	42.00	15.00
S722HB18.0	18.00	0.20	18.00	32.00	92.0	4	42.00	17.00
S722HB20.0	20.00	0.20	20.00	38.00	104.0	4	50.00	19.00

Фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


DCON MS с допуском h6.

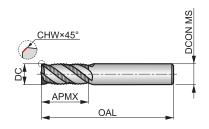

Обозначение	DC	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(мм)	(MM)	
S7613.0	3.00	6.00	9.00	57.0	4
S7614.0	4.00	6.00	12.00	57.0	4
S7615.0	5.00	6.00	13.00	57.0	4
S7616.0	6.00	6.00	13.00	57.0	4
S7618.0	8.00	8.00	20.00	64.0	4
S76110.0	10.00	10.00	22.00	72.0	4
S76112.0	12.00	12.00	26.00	83.0	4
S76114.0	14.00	14.00	32.00	83.0	4
S76116.0	16.00	16.00	32.00	92.0	4
\$76120.0	20.00	20.00	38.00	104.0	4

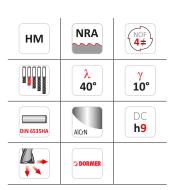
Фреза из твердого сплава с радиусом

Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

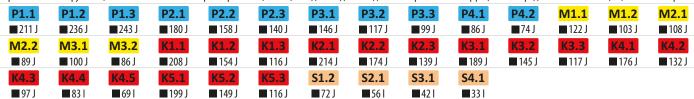
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■211 J	■236 J	■ 243 J	■ 180 J	■ 158 J	■ 140 l	■ 146 J	■117 I	■ 99 l	■ 861	1 74 I	■ 122 J	■ 103 J	■108 J
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 891	■ 100 I	■ 861	■ 208 J	■ 154 J	■116 J	■ 214 J	■ 174 J	■139 I	■ 189 J	■ 145 J	■117 I	■ 176 I	■ 132 I
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
071	■ 02 I	601	100	1401	1161	72.1	E 6 1	42 I	■ 22 I				


DCON MS с допуском h6; RE ± 0.01 мм.


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(мм)	(MM)	(MM)	(MM)	(MM)	
S7633.0XR0.3	3.00	0.30	3.00	9.00	40.0	4
S7634.0XR0.3	4.00	0.30	4.00	12.00	50.0	4
S7634.0XR0.5	4.00	0.50	4.00	12.00	50.0	4
S7635.0XR0.3	5.00	0.30	5.00	15.00	50.0	4
S7635.0XR0.5	5.00	0.50	5.00	15.00	50.0	4
S7636.0XR0.5	6.00	0.50	6.00	16.00	50.0	4
S7636.0XR1.0	6.00	1.00	6.00	16.00	50.0	4
S7638.0XR0.5	8.00	0.50	8.00	20.00	64.0	4
S7638.0XR1.0	8.00	1.00	8.00	20.00	64.0	4
S76310.0XR0.5	10.00	0.50	10.00	22.00	70.0	4
S76310.0XR1.0	10.00	1.00	10.00	22.00	70.0	4
S76310.0XR2.0	10.00	2.00	10.00	22.00	70.0	4
S76312.0XR1.0	12.00	1.00	12.00	25.00	75.0	4
S76312.0XR2.0	12.00	2.00	12.00	25.00	75.0	4
S76312.0XR3.0	12.00	3.00	12.00	25.00	75.0	4
S76314.0XR1.5	14.00	1.50	14.00	32.00	90.0	4
S76316.0XR1.0	16.00	1.00	16.00	32.00	90.0	4
S76316.0XR2.0	16.00	2.00	16.00	32.00	90.0	4
S76316.0XR3.0	16.00	3.00	16.00	32.00	90.0	4
S76318.0XR2.0	18.00	2.00	18.00	38.00	100.0	4
S76320.0XR3.0	20.00	3.00	20.00	38.00	100.0	4

Фреза из твердого сплава с фаской для черновой обработки


Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев, стружколомающий профиль NRA и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

DCON MS с допуском h6; CHW \pm 0.02X45° мм.

Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S7656.0	6.00	0.10	6.00	16.00	50.0	4
\$7658.0	8.00	0.20	8.00	20.00	64.0	4
S76510.0	10.00	0.20	10.00	22.00	70.0	4
S76512.0	12.00	0.20	12.00	26.00	75.0	4
S76514.0	14.00	0.30	14.00	32.00	90.0	4
S76516.0	16.00	0.30	16.00	32.00	90.0	4
S76518.0	18.00	0.30	18.00	38.00	100.0	4
\$76520.0	20.00	0.40	20.00	38.00	100.0	4

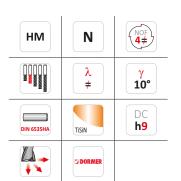


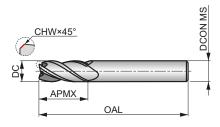
Фреза из твердого сплава с фаской для черновой обработки

Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев, стружколомающий профиль NRA и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■211 J	■236 J	■ 243 J	■ 180 J	■ 158 J	■ 140 J	■ 146 J	■ 117 J	■99 J	■86 J	■74 J	■ 122 J	■ 103 J	■108 J
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■89 J	■ 100 J	■86 J	■ 208 J	■ 154 J	■116 J	■214 J	■ 174 J	■139 J	■189 J	■ 145 J	■117 J	■ 176 J	■132 J
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
97 [831	691	199 I	149 I	■116 I	■72 I	561	4 21	331				


DCON MS с допуском h6; CHW $\pm\,0.02\text{X}45^\circ$ мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(мм)	
S765HB6.0	6.00	0.10	6.00	16.00	50.0	4
S765HB8.0	8.00	0.20	8.00	20.00	64.0	4
S765HB10.0	10.00	0.20	10.00	22.00	70.0	4
S765HB12.0	12.00	0.20	12.00	26.00	75.0	4
S765HB14.0	14.00	0.30	14.00	32.00	90.0	4
S765HB16.0	16.00	0.30	16.00	32.00	90.0	4
S765HB18.0	18.00	0.30	18.00	38.00	100.0	4
S765HB20.0	20.00	0.40	20.00	38.00	100.0	4

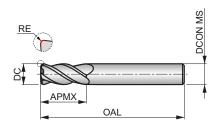
Фреза из твердого сплава с фаской

Конструкция фрезы имеет переменный угол наклона спирали, переменный шаг зубьев и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

								<u> </u>					
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■211 J	■236 J	■243 J	■180 J	■ 158 J	■ 140 l	■ 146 J	■ 117 l	■ 991	■ 86 l	■ 741	■ 122 J	■ 103 J	■ 108 J
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■89 I	■ 100 I	■86 I	■208 J	■ 154 J	■ 116 J	■214 J	■ 174 J	■139 I	■ 189 J	■ 145 J	■117 I	■176 l	■132 I
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
■ 971	■83 I	■ 691	■ 199 I	■ 149 I	■116 l	■ 72 l	■ 561	■ 42 l	■ 33 l				

DCON MS с допуском h6; CHW $\pm\,0.02\text{X}45^\circ\,\text{мм}.$

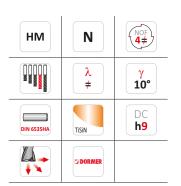

Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S7664.0	4.00	0.10	6.00	11.00	57.0	4
\$7665.0	5.00	0.10	6.00	13.00	57.0	4
S7666.0	6.00	0.10	6.00	13.00	57.0	4
S7668.0	8.00	0.20	8.00	20.00	64.0	4
S76610.0	10.00	0.20	10.00	22.00	72.0	4
S76612.0	12.00	0.20	12.00	26.00	83.0	4
S76614.0	14.00	0.30	14.00	26.00	83.0	4
S76616.0	16.00	0.30	16.00	32.00	92.0	4
\$76620.0	20.00	0.40	20.00	38.00	104.0	4

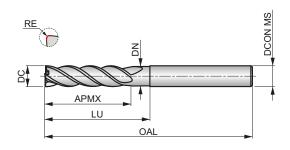
Фреза из твердого сплава с радиусом

Конструкция фрезы имеет переменный угол наклона спирали, переменный шаг зубьев и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■211 J	■236 J	■ 243 J	■ 180 J	■ 158 J	■ 140 I	■ 146 J	■ 117 l	■ 99 l	■ 861	■ 741	■ 122 J	■ 103 J	■108 J
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 891	■ 100 I	■ 861	■ 208 J	■ 154 J	■116 J	■ 214 J	■ 174 J	■139 I	■189 J	■ 145 J	■117 I	■ 176 l	■ 132 I
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
971	831	691	199 I	1491	1161	■ 721	561	4 21	331				


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(мм)	(мм)	(мм)	
S7674.0XR0.3	4.00	0.30	6.00	11.00	57.0	4
S7674.0XR0.5	4.00	0.50	6.00	11.00	57.0	4
S7675.0XR0.3	5.00	0.30	6.00	13.00	57.0	4
S7675.0XR0.5	5.00	0.50	6.00	13.00	57.0	4
S7676.0XR0.3	6.00	0.30	6.00	13.00	57.0	4
S7676.0XR0.5	6.00	0.50	6.00	13.00	57.0	4
S7676.0XR1.0	6.00	1.00	6.00	13.00	57.0	4
S7678.0XR0.3	8.00	0.30	8.00	20.00	64.0	4
S7678.0XR0.5	8.00	0.50	8.00	20.00	64.0	4
S7678.0XR1.0	8.00	1.00	8.00	20.00	64.0	4
S76710.0XR0.3	10.00	0.30	10.00	22.00	72.0	4
S76710.0XR0.5	10.00	0.50	10.00	22.00	72.0	4
S76710.0XR1.0	10.00	1.00	10.00	22.00	72.0	4
S76712.0XR0.3	12.00	0.30	12.00	26.00	83.0	4
S76712.0XR0.5	12.00	0.50	12.00	26.00	83.0	4
S76712.0XR1.0	12.00	1.00	12.00	26.00	83.0	4
S76712.0XR2.0	12.00	2.00	12.00	26.00	83.0	4
S76716.0XR0.3	16.00	0.30	16.00	32.00	92.0	4
S76716.0XR0.5	16.00	0.50	16.00	32.00	92.0	4
S76716.0XR1.0	16.00	1.00	16.00	32.00	92.0	4
S76716.0XR2.0	16.00	2.00	16.00	32.00	92.0	4
S76720.0XR0.3	20.00	0.30	20.00	38.00	104.0	4
S76720.0XR0.5	20.00	0.50	20.00	38.00	104.0	4
S76720.0XR1.0	20.00	1.00	20.00	38.00	104.0	4
S76720.0XR2.0	20.00	2.00	20.00	38.00	104.0	4



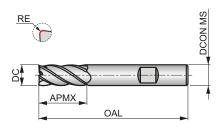
Фреза из твердого сплава удлиненной конструкции с радиусом

Конструкция фрезы имеет переменный угол наклона спирали, переменный шаг зубьев, уменьшенную шейку и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1 2	P1.3	P2 1	P2 2	P2 3	P3.1	P3 2	P3 3	P4.1	P4 2	M1 1	M1 2	M2.1
1481	■ 165 I	■ 170 I		1111			■82 G			■52 G			
M2.2		M3.2							K3.1				
■ 621	■ 701	■601		■ 108 I		■ 150 I					■82 G	123 G	
K4.3	K4.4							S3.1		1021	-020	1230	— /2 0
■68 G	581	481				■ 501		■29 G	■ 23 G				

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
S7684.0	4.00	0.10	6.00	19.00	75.0	4	32.00	3.70
S7685.0	5.00	0.10	6.00	19.00	75.0	4	32.00	4.60
S7686.0	6.00	0.10	6.00	25.00	75.0	4	32.00	5.50
S7688.0	8.00	0.20	8.00	30.00	75.0	4	38.00	7.40
S76810.0	10.00	0.20	10.00	40.00	100.0	4	50.00	9.20
S76812.0	12.00	0.30	12.00	45.00	100.0	4	55.00	11.00
S76816.0	16.00	0.30	16.00	65.00	125.0	4	75.00	15.00
\$76820.0	20.00	0.30	20.00	65.00	125.0	4	75.00	19.00



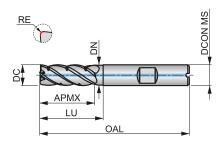
Фреза из твердого сплава с радиусом

Конструкция фрезы имеет переменный угол наклона спирали и геометрию для высокопроизводительного динамического фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
211 I	■236 I	■ 243 l	■ 180 l	■ 158 l	■ 140 I	■146 l	■ 117 l	■ 99 l	■ 861	■ 741	■122 l	■ 103 l	■ 108 I
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 891	■ 100 I	■86 I	208 I	■ 154 l	■116 I	214 I	■ 174 l	■139 I	■ 189 I	■145 I	■117 I	■ 176 l	■ 132 I
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
■ 97 I	■83 G	■ 69 G	■ 199 I	■ 149 I	1 1161	72 I	■ 56 G	■ 42 G	■33 G				

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S770HB10.0	10.00	0.20	10.00	22.00	72.0	5
S770HB12.0	12.00	0.30	12.00	26.00	83.0	5
S770HB16.0	16.00	0.30	16.00	32.00	92.0	5
S770HB20.0	20.00	0.30	20.00	38.00	104.0	5

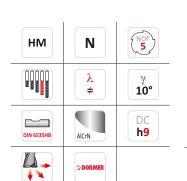


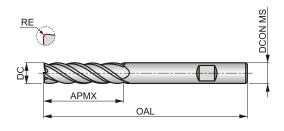
Фреза из твердого сплава с радиусом для черновой обработки

Конструкция фрезы имеет переменный угол наклона спирали, стружколомающий профиль FS, внутренний подвод СОЖ и геометрию для высокопроизводительного динамического фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

	. 17	.,		- F	,	111						1. /	
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■ 222 J	■ 248 J	■255 J	■189 J	■ 166 J	■ 147 I	■ 153 J	■ 123 l	■ 104 I	■90 I	■ 78 l	■ 128 I	■108 I	■113 l
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 931	■ 105 I	■ 90 l	■218 J	■ 162 J	■ 122 J	■ 225 J	■ 183 J	■146 I	■ 198 J	■ 152 I	■ 123 I	■ 185 I	■139 I
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
■102 I	■ 87 I	1 72 l	■ 209 I	■ 156 l	■ 122 I	■ 761	■ 591	■ 44 G	■ 35 G				


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(мм)		(MM)	(MM)
S771HB10.0	10.00	0.20	10.00	25.00	72.0	5	30.00	9.70
S771HB12.0	12.00	0.20	12.00	30.00	83.0	5	38.00	11.70
S771HB16.0	16.00	0.30	16.00	39.00	92.0	5	44.00	15.70
S771HB20.0	20.00	0.30	20.00	48.00	104.0	5	54.00	19.70



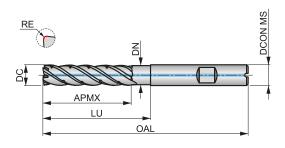
Фреза из твердого сплава удлиненной конструкции с радиусом

Конструкция фрезы имеет переменный угол наклона спирали и геометрию для высокопроизводительного динамического фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

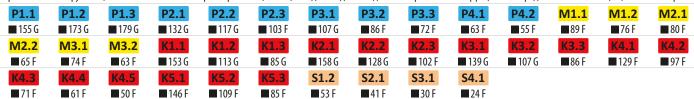
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■ 148 G	■ 165 G	■ 170 G	■126 G	■111 G	■98 F	■ 102 G	■82 F	■69 F	■60 F	■ 52 F	■ 85 G	■72 G	■ 76 G
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■62 G	■70 G	■ 60 G	■ 146 G	■108 G	■81 G	■ 150 G	■ 122 G	■97 F	■132 G	■ 102 G	■ 82 F	■123 F	■ 92 F
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
■ 68 F	■ 58 G	■ 48 G	■ 139 F	104 F	■81 F	■ 50 F	■39 F	■29 F	■23 F				

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S772HB10.0	10.00	0.20	10.00	38.00	100.0	5
S772HB12.0	12.00	0.30	12.00	45.00	100.0	5
S772HB16.0	16.00	0.30	16.00	55.00	125.0	5
S772HB20.0	20.00	0.30	20.00	65.00	125.0	5

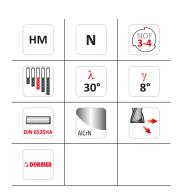


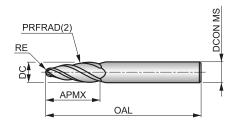
Фреза из твердого сплава удлиненной конструкции с радиусом для черновой обработки


Конструкция фрезы имеет переменный угол наклона спирали, уменьшенную шейку, стружколомающий профиль FS, внутренний подвод СОЖ и геометрию для высокопроизводительного динамического фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

DCON MS с допуском h6; RE ± 0.01 мм.


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(мм)		(MM)	(MM)
S773HB10.0	10.00	0.20	10.00	42.00	100.0	5	52.00	9.70
S773HB12.0	12.00	0.20	12.00	42.00	100.0	5	54.00	11.70
S773HB16.0	16.00	0.30	16.00	60.00	125.0	5	68.00	15.70
S773HB20.0	20.00	0.30	20.00	67.00	125.0	5	75.00	19.70



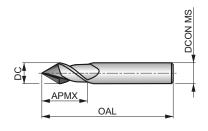
Параболическая фреза из твердого сплава

Конструкция фрезы имеет форму со сферической вершиной и боковой поверхностью большого радиуса, угол наклона спирали 30° и геометрию для высокопроизводительного копировального фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■161 F	■181 F	■ 186 F	■ 138 F	■ 121 F	■ 108 E	■ 112 F	■90 E	■76 E	■ 66 E	■ 57 E	Z 46 E	■ 94 F	■ 79 F
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■83 F	■ 69 E	 77 E	Z 66 E	 59 E	 ■ 58 E	■ 161 F	■ 119 F	■89 F	■ 165 F	■ 134 F	■ 107 E	■ 146 F	■112 F
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 90 E	■ 136 E	■ 102 E	■75 E	■ 64 E	■ 54 E	■ 154 E	■ 115 E	■89 E	 355 I	Z 267 I	∠ 179 l	■ 179 F	 160 F
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1			
■ 115 F	■ 187 F	■ 109 F	 ■ 56 F	 187 F	Z 72 F	≥ 58 E	 ■ 56 E	■ 43 E	≥ 33 E	Z 26 E			

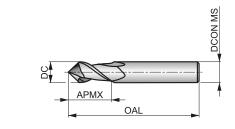
DCON MS с допуском h6; RE ± 0.01 мм; PRFRAD(2) ± 0.01 мм.

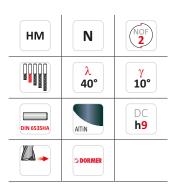

Обозначение	DC	RE	PRFRAD(2)	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(мм)	(MM)	(MM)	(MM)	
S7916.0	6.00	1.00	95.0	6.00	22.00	67.0	3
S7918.0	8.00	1.00	90.0	8.00	25.00	75.0	3
S79110.0	10.00	2.00	85.0	10.00	26.00	75.0	4
S79112.0	12.00	2.00	80.0	12.00	28.00	83.0	4
S79116.0	16.00	3.00	75.0	16.00	31.00	90.0	4

Фреза из твердого сплава для обработки фасок 60°

Конструкция фрезы имеет угол наклона спирали 40°, угол при вершине 60° и геометрию для высокопроизводительного фрезерования фасок на заготовках из большинства материалов. Покрытие AlTiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

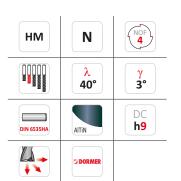

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■ 199 K	223 K	230 K	■ 170 K	■ 150 K	■ 133 J	■138 K	■111 J	■94 J	■ 82 J	■70 J	■ 115 K	■ 97 K	■ 102 K
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 84 J	■94 J	■81 J	■ 196 K	■ 145 K	■ 109 K	■ 202 K	■164 K	■131 J	■ 178 K	■ 136 K	■110 J	■ 165 J	■ 125 J
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2
■ 91 J	■78 J	■65 J	■ 187 J	■ 141 J	■ 109 J	■ 355 N	■ 267 N	■ 179 N	■ 179 K	■ 160 K	■ 115 K	■ 187 K	■ 109 K
N3.3	S1.2	S2.1	S3.1	S4.1									
≥ 56 K	■ 69 J	■53 J	■ 40 J	■31 J									

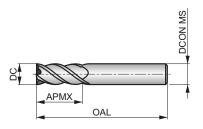

Обозначение	KAPR	DC	DCON MS	APMX	OAL	NOF
	(°)	(MM)	(MM)	(MM)	(MM)	
\$7393.0	60	3.00	3.00	9.00	40.0	2
S7394.0	60	4.00	4.00	12.00	50.0	2
\$7395.0	60	5.00	5.00	15.00	50.0	2
\$7396.0	60	6.00	6.00	16.00	50.0	2
\$7398.0	60	8.00	8.00	20.00	64.0	2
\$73910.0	60	10.00	10.00	22.00	70.0	2
S73912.0	60	12.00	12.00	25.00	75.0	2
\$73916.0	60	16.00	16.00	32.00	90.0	2
\$73920.0	60	20.00	20.00	38.00	100.0	2

Фреза из твердого сплава для обработки фасок 90°

Конструкция фрезы имеет угол наклона спирали 40°, угол при вершине 90° и геометрию для высокопроизводительного фрезерования фасок на заготовках из большинства материалов. Покрытие AITiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

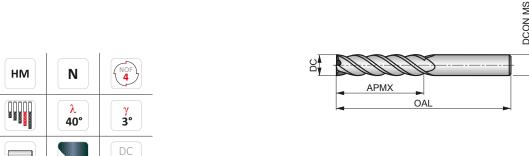

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■ 199 K	223 K	■ 230 K	■ 170 K	■150 K	■ 133 J	■ 138 K	■ 111 J	■94 J	■82 J	■ 70 J	■ 115 K	■97 K	■ 102 K
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 84 J	■ 94 J	■81 J	■ 196 K	■145 K	■ 109 K	■ 202 K	■ 164 K	■131 J	■ 178 K	■ 136 K	■110 J	■ 165 J	■125 J
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2
■91 J	■78 J	■ 65 J	■ 187 J	■ 141 J	■ 109 J	■ 355 N	■267 N	■179 N	■ 179 K	■ 160 K	■ 115 K	■ 187 K	■109 K
N3.3	S1.2	S2.1	S3.1	S4.1									
≥ 56 K	■ 69 J	■ 53 J	■ 40 J	■ 31 J									


Обозначение	KAPR	DC	DCON MS	APMX	OAL	NOF
	(°)	(MM)	(MM)	(MM)	(MM)	
\$7403.0	90	3.00	3.00	9.00	40.0	2
S7404.0	90	4.00	4.00	12.00	50.0	2
\$7405.0	90	5.00	5.00	15.00	50.0	2
S7406.0	90	6.00	6.00	16.00	50.0	2
S7408.0	90	8.00	8.00	20.00	64.0	2
S74010.0	90	10.00	10.00	22.00	70.0	2
S74012.0	90	12.00	12.00	25.00	75.0	2
S74016.0	90	16.00	16.00	32.00	90.0	2
\$74020.0	90	20.00	20.00	38.00	100.0	2

Фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования труднообрабатываемых материалов. Покрытие AlTiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.



Обозначение	DC	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(мм)	
S2162.0	2.00	4.00	6.50	40.0	4
S2163.0XD3	3.00	3.00	9.00	40.0	4
S2163.0XD6	3.00	6.00	9.00	50.0	4
S2164.0XD4	4.00	4.00	12.00	50.0	4
S2164.0XD6	4.00	6.00	12.00	50.0	4
S2165.0	5.00	5.00	15.00	50.0	4
S2166.0	6.00	6.00	16.00	50.0	4
S2168.0	8.00	8.00	20.00	64.0	4
S21610.0	10.00	10.00	22.00	70.0	4
S21612.0	12.00	12.00	25.00	75.0	4
S21614.0	14.00	14.00	32.00	90.0	4
S21616.0	16.00	16.00	32.00	90.0	4
S21618.0	18.00	18.00	38.00	100.0	4
S21620.0	20.00	20.00	38.00	100.0	4

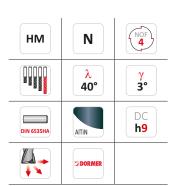
Фреза из твердого сплава удлиненной конструкции

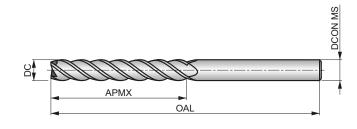
Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования труднообрабатываемых материалов. Покрытие AlTiN повышает стойкость и производительность.

DIN 6535HA AlTiN

h9

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

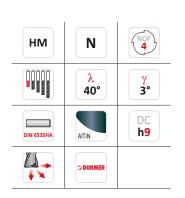

M2.3 M4.1 M4.2 **S1.3 S2.2 S3.2 S4.2** M3.3 ■ 64 J ■ 64 J ■ 65 l **■** 64 l **54** l ■46 l **■**38 l **26** l **22** l

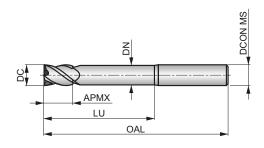

Обозначение	DC	DCON MS	АРМХ	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
S2173.0XD3	3.00	3.00	19.00	60.0	4
S2173.0XD6	3.00	6.00	19.00	75.0	4
S2174.0XD4	4.00	4.00	19.00	60.0	4
S2174.0XD6	4.00	6.00	19.00	75.0	4
S2175.0	5.00	5.00	19.00	60.0	4
S2176.0	6.00	6.00	31.00	75.0	4
S2178.0	8.00	8.00	31.00	75.0	4
S21710.0	10.00	10.00	31.00	75.0	4
S21712.0	12.00	12.00	50.00	100.0	4
S21714.0	14.00	14.00	57.00	125.0	4
S21716.0	16.00	16.00	57.00	125.0	4
S21718.0	18.00	18.00	57.00	125.0	4
S21720.0	20.00	20.00	57.00	125.0	4

Фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования труднообрабатываемых материалов. Покрытие AlTiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


M2.3 M4.2 **S1.3 S2.2 S3.2 S4.2** M3.3 M4.1 ■ 40 J ■ 40 J ■ 41 l ■ 40 l ■34 l ■ 29 l **24** l ■ 17 l **1**4 l

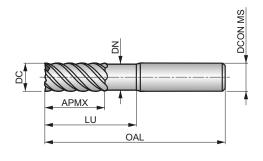

Обозначение	DC	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
S2183.0	3.00	3.00	25.00	100.0	4
S2184.0	4.00	4.00	31.00	100.0	4
S2185.0	5.00	5.00	31.00	100.0	4
S2186.0	6.00	6.00	38.00	100.0	4
S2188.0	8.00	8.00	41.00	100.0	4
S21810.0	10.00	10.00	57.00	125.0	4
S21812.0	12.00	12.00	75.00	150.0	4
S21814.0	14.00	14.00	75.00	150.0	4
S21816.0	16.00	16.00	75.00	150.0	4
S21818.0	18.00	18.00	75.00	150.0	4
S21820.0	20.00	20.00	75.00	150.0	4

Фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет короткую режущую часть, угол наклона спирали 40°, уменьшенную шейку и геометрию для высокопроизводительного фрезерования глубоких карманов заготовок из труднообрабатываемых материалов. Покрытие AITiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

M2.3 M4.2 **S1.3 S2.2 S3.2 S4.2** M3.3 M4.1 ■ 64 J ■ 64 J ■ 65 l **■** 64 l **54** l ■46 l **■**38 l **26** l **22** l

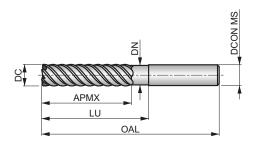

Обозначение	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
S2193.0	3.00	3.00	5.00	60.0	4	30.00	2.80
S2194.0	4.00	4.00	8.00	60.0	4	32.00	3.70
S2195.0	5.00	5.00	9.00	60.0	4	32.00	4.60
S2196.0	6.00	6.00	10.00	75.0	4	40.00	5.50
S2198.0	8.00	8.00	12.00	75.0	4	40.00	7.40
S21910.0	10.00	10.00	14.00	75.0	4	40.00	9.20
S21912.0	12.00	12.00	16.00	100.0	4	60.00	11.00
S21914.0	14.00	14.00	22.00	125.0	4	85.00	13.00
S21916.0	16.00	16.00	22.00	125.0	4	85.00	15.00
S21918.0	18.00	18.00	26.00	125.0	4	85.00	17.00
S21920.0	20.00	20.00	26.00	125.0	4	85.00	19.00

Фреза из твердого сплава для чистовой обработки

Конструкция фрезы имеет уменьшенную шейку, угол наклона спирали 50° и геометрию для высокопроизводительного чистового фрезерования труднообрабатываемых материалов. Покрытие AlTiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

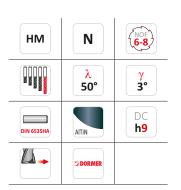
M2.3 M4.2 **S1.3 S2.2 S3.2 S4.2** M3.3 M4.1 ■82 F ■ 80 G ■80 G ■ 80 F ■ 68 F ■ 58 F ■ 47 F ■33 F ■ 27 F

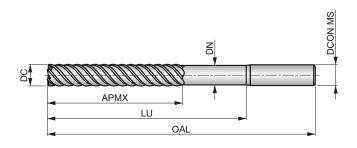

Обозначение	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(мм)	(MM)	(MM)		(MM)	(MM)
S2253.0	3.00	6.00	8.00	50.0	6	20.00	2.80
S2254.0	4.00	6.00	11.00	50.0	6	20.00	3.70
S2256.0	6.00	6.00	15.00	50.0	6	20.00	5.50
S2258.0	8.00	8.00	20.00	64.0	6	30.00	7.40
S22510.0	10.00	10.00	22.00	70.0	6	32.00	9.20
S22512.0	12.00	12.00	25.00	75.0	6	37.00	11.00
S22514.0	14.00	14.00	30.00	90.0	6	44.00	13.00
S22516.0	16.00	16.00	30.00	90.0	8	46.00	15.00
S22518.0	18.00	18.00	35.00	100.0	8	53.00	17.00
S22520.0	20.00	20.00	38.00	100.0	8	58.00	19.00

Фреза из твердого сплава удлиненной конструкции для чистовой обработки

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 50° и геометрию для высокопроизводительного чистового фрезерования труднообрабатываемых материалов. Покрытие AlTiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

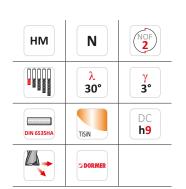

M2.3 M3.3 M4.1 M4.2 **S1.3 S2.2 S3.2 S4.2** ■ 65 F ■64 G ■ 64 G ■ 64 F ■ 54 F ■ 46 F ■38 F **26** F **22** F


Обозначение	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(мм)	(MM)	(MM)	(MM)		(MM)	(MM)
S2263.0	3.00	6.00	19.00	75.0	6	30.00	2.80
S2264.0	4.00	6.00	19.00	75.0	6	32.00	3.70
S2266.0	6.00	6.00	31.00	75.0	6	40.00	5.50
S2268.0	8.00	8.00	31.00	75.0	6	40.00	7.40
S22610.0	10.00	10.00	45.00	100.0	6	60.00	9.20
S22612.0	12.00	12.00	50.00	100.0	6	60.00	11.00
S22614.0	14.00	14.00	57.00	125.0	6	85.00	13.00
S22616.0	16.00	16.00	57.00	125.0	8	85.00	15.00
S22618.0	18.00	18.00	57.00	125.0	8	85.00	17.00
S22620.0	20.00	20.00	57.00	125.0	8	85.00	19.00

Фреза из твердого сплава удлиненной конструкции для чистовой обработки

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 50°, уменьшенную шейку и геометрию для высокопроизводительного фрезерования глубоких карманов заготовок из труднообрабатываемых материалов. Покрытие AITiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

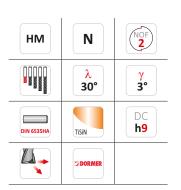

M2.3 M4.2 **S3.2 S4.2** M3.3 M4.1 **S1.3 S2.2 40** G ■ 40 G ■ 41 F ■ 40 F ■ 34 F **29** F ■ 24 F ■ 17 F ■ 14 F

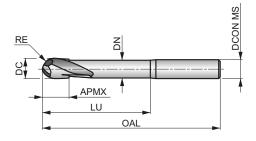
Обозначение	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(мм)	(MM)		(MM)	(мм)
S2276.0	6.00	6.00	38.00	100.0	6	60.00	5.50
S2278.0	8.00	8.00	41.00	100.0	6	60.00	7.40
S22710.0	10.00	10.00	57.00	125.0	6	85.00	9.20
S22712.0	12.00	12.00	75.00	150.0	6	110.00	11.00
S22714.0	14.00	14.00	75.00	150.0	6	110.00	13.00
S22716.0	16.00	16.00	75.00	150.0	8	110.00	15.00
S22718.0	18.00	18.00	75.00	150.0	8	110.00	17.00
S22720.0	20.00	20.00	75.00	150.0	8	110.00	19.00

Сферическая фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и геометрию для высокопроизводительного копировального фрезерования труднообрабатываемых материалов. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


M2.3 M4.1 M4.2 **S1.3 S2.2 S3.2 S4.2** M3.3 ■ 80 F ■ 80 F ■ 82 F ■ 80 F ■ 68 F ■ 58 F ■ 47 F ■ 33 F ■ 27 F

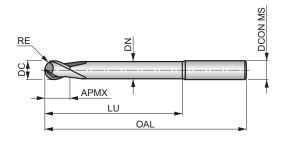

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(мм)	(MM)	(MM)	(MM)		(MM)	(MM)
S2291.5XD4	1.50	0.75	4.00	3.00	50.0	2	6.00	1.40
S2292.0XD3	2.00	1.00	3.00	4.00	50.0	2	8.00	1.90
S2292.0XD4	2.00	1.00	4.00	4.00	50.0	2	8.00	1.90
S2293.0XD3	3.00	1.50	3.00	5.00	50.0	2	14.00	2.80
S2293.0XD6	3.00	1.50	6.00	5.00	50.0	2	14.00	2.80
S2294.0XD4	4.00	2.00	4.00	8.00	50.0	2	20.00	3.70
S2294.0XD6	4.00	2.00	6.00	8.00	50.0	2	20.00	3.70
S2295.0XD5	5.00	2.50	5.00	9.00	50.0	2	20.00	4.60
S2295.0XD6	5.00	2.50	6.00	9.00	50.0	2	20.00	4.60
S2296.0	6.00	3.00	6.00	10.00	50.0	2	20.00	5.50
S2298.0	8.00	4.00	8.00	12.00	64.0	2	30.00	7.40
S22910.0	10.00	5.00	10.00	14.00	70.0	2	32.00	9.20
S22912.0	12.00	6.00	12.00	16.00	75.0	2	38.00	11.00
S22914.0	14.00	7.00	14.00	32.00	90.0	2	44.00	13.00
S22916.0	16.00	8.00	16.00	32.00	90.0	2	46.00	15.00

Сферическая фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и геометрию для высокопроизводительного копировального фрезерования труднообрабатываемых материалов. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

M2.3 M4.2 **S1.3 S2.2 S3.2 S4.2** M3.3 M4.1 64 F ■ 64 F ■ 65 F ■ 64 F ■ 54 F ■ 46 F ■38 F ■ 26 F **22** F


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(MM)		(MM)	(мм)
S2311.5XD4	1.50	0.75	4.00	3.00	75.0	2	10.00	1.40
S2312.0XD3	2.00	1.00	3.00	4.00	60.0	2	14.00	1.90
S2312.0XD4	2.00	1.00	4.00	4.00	75.0	2	14.00	1.90
S2313.0XD3	3.00	1.50	3.00	5.00	60.0	2	21.00	2.80
S2313.0XD6	3.00	1.50	6.00	5.00	75.0	2	21.00	2.80
S2314.0XD4	4.00	2.00	4.00	8.00	60.0	2	28.00	3.70
S2314.0XD6	4.00	2.00	6.00	8.00	75.0	2	28.00	3.70
S2315.0	5.00	2.50	5.00	9.00	60.0	2	32.00	4.60
S2316.0	6.00	3.00	6.00	10.00	75.0	2	40.00	5.50
S2318.0	8.00	4.00	8.00	10.00	75.0	2	40.00	7.40
S23110.0	10.00	5.00	10.00	12.00	75.0	2	40.00	9.20
S23112.0	12.00	6.00	12.00	16.00	100.0	2	60.00	11.00
S23116.0	16.00	8.00	16.00	32.00	125.0	2	80.00	15.00

Сферическая фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и геометрию для высокопроизводительного копировального фрезерования труднообрабатываемых материалов. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

M2.3 M4.1 M4.2 **S1.3 S2.2 S3.2 S4.2** M3.3 ■ 40 F ■ 40 F ■ 41 F ■ 40 F ■34 F ■ 29 F **24** F ■ 17 F ■14 F

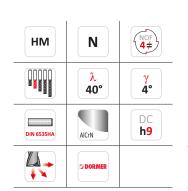
Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(MM)		(мм)	(MM)
S2332.0XD3	2.00	1.00	3.00	4.00	100.0	2	20.00	1.90
S2332.0XD4	2.00	1.00	4.00	4.00	100.0	2	20.00	1.90
S2333.0XD3	3.00	1.50	3.00	5.00	100.0	2	30.00	2.80
S2333.0XD6	3.00	1.50	6.00	5.00	100.0	2	30.00	2.80
S2334.0XD4	4.00	2.00	4.00	8.00	100.0	2	40.00	3.70
S2334.0XD6	4.00	2.00	6.00	8.00	100.0	2	40.00	3.70
S2335.0	5.00	2.50	5.00	9.00	100.0	2	50.00	4.60
S2336.0	6.00	3.00	6.00	10.00	100.0	2	60.00	5.50
S2338.0	8.00	4.00	8.00	12.00	100.0	2	60.00	7.40
S23310.0	10.00	5.00	10.00	14.00	125.0	2	85.00	9.20
S23312.0	12.00	6.00	12.00	16.00	125.0	2	85.00	11.00
S23314.0	14.00	7.00	14.00	32.00	150.0	2	110.00	13.00
S23316.0	16.00	8.00	16.00	32.00	150.0	2	110.00	15.00

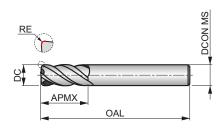
Фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 40° , переменный шаг зубьев и геометрию для высокопроизводительного фрезерования труднообрабатываемых материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

M2.3 M4.2 **S1.3 S2.2 S3.2 S4.2** H1.1 H2.1 H3.1 H3.2 M3.3 M4.1 ■ 97 J ■ 97 J ■ 99 I ■ 97 l ■ 83 I ■ 70 l ■ 56 l ■40 I ■32 l **■** 179 l ■ 106 G ■ 118 G ■ 97 G


DCON MS с допуском h6.


Обозначение	DC	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
S2603.0	3.00	6.00	9.00	57.0	4
S2604.0	4.00	6.00	12.00	57.0	4
S2605.0	5.00	6.00	13.00	57.0	4
S2606.0	6.00	6.00	13.00	57.0	4
S2608.0	8.00	8.00	20.00	64.0	4
S26010.0	10.00	10.00	22.00	72.0	4
S26012.0	12.00	12.00	26.00	83.0	4
S26014.0	14.00	14.00	32.00	83.0	4
S26016.0	16.00	16.00	32.00	92.0	4
S26018.0	18.00	18.00	38.00	92.0	4
S26020.0	20.00	20.00	38.00	104.0	4

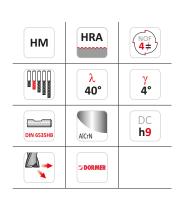
Фреза из твердого сплава с радиусом

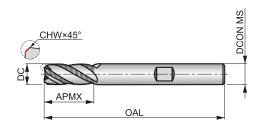
Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев и геометрию для высокопроизводительного фрезерования труднообрабатываемых материалов. Покрытие AICrN повышает стойкость и производительность.

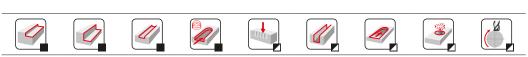
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

M4.2 **S1.3 S4.2** H1.1 H2.1 H3.1 H3.2 M2.3 M3.3 M4.1 **S2.2 S3.2** ■ 97 J ■ 97 J ■ 99 I ■ 97 l ■ 83 I ■70 l **■**56 l ■ 40 l **32** I ■ 179 l ■ 106 G ■ 118 G ■97 G

DCON MS с допуском h6; RE ± 0.01 мм.


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(мм)	(MM)	(MM)	(мм)	(мм)	
S2623.0XR0.3	3.00	0.30	6.00	9.00	50.0	4
S2623.0XR0.5	3.00	0.50	6.00	9.00	50.0	4
S2624.0XR0.3	4.00	0.30	6.00	12.00	57.0	4
S2624.0XR0.5	4.00	0.50	6.00	12.00	57.0	4
S2624.0XR1.0	4.00	1.00	6.00	12.00	57.0	4
S2625.0XR0.3	5.00	0.30	6.00	15.00	57.0	4
S2625.0XR0.5	5.00	0.50	6.00	15.00	57.0	4
S2626.0XR0.3	6.00	0.30	6.00	16.00	57.0	4
S2626.0XR0.5	6.00	0.50	6.00	16.00	57.0	4
S2626.0XR1.0	6.00	1.00	6.00	16.00	57.0	4
52628.0XR0.3	8.00	0.30	8.00	20.00	64.0	4
52628.0XR0.5	8.00	0.50	8.00	20.00	64.0	4
52628.0XR1.0	8.00	1.00	8.00	20.00	64.0	4
52628.0XR1.5	8.00	1.50	8.00	20.00	64.0	4
S2628.0XR2.0	8.00	2.00	8.00	20.00	64.0	4
S26210.0XR0.3	10.00	0.30	10.00	22.00	72.0	4
526210.0XR0.5	10.00	0.50	10.00	22.00	72.0	4
S26210.0XR1.0	10.00	1.00	10.00	22.00	72.0	4
S26210.0XR1.5	10.00	1.50	10.00	22.00	72.0	4
S26210.0XR2.0	10.00	2.00	10.00	22.00	72.0	4
S26212.0XR0.3	12.00	0.30	12.00	26.00	83.0	4
S26212.0XR0.5	12.00	0.50	12.00	26.00	83.0	4
526212.0XR1.0	12.00	1.00	12.00	26.00	83.0	4
S26212.0XR2.0	12.00	2.00	12.00	26.00	83.0	4
526212.0XR2.5	12.00	2.50	12.00	26.00	83.0	4
526212.0XR3.0	12.00	3.00	12.00	26.00	83.0	4
526214.0XR0.3	14.00	0.30	14.00	32.00	83.0	4
526214.0XR0.5	14.00	0.50	14.00	32.00	83.0	4
526214.0XR1.0	14.00	1.00	14.00	32.00	83.0	4
S26214.0XR2.0	14.00	2.00	14.00	32.00	83.0	4
S26214.0XR3.0	14.00	3.00	14.00	32.00	83.0	4


Обозначение	DC	RE	DCON MS	APMX	OAL (MM)	NOF
S26216.0XR0.3	16.00	0.30	16.00	32.00	92.0	4
S26216.0XR0.5						
220210101010	16.00	0.50	16.00	32.00	92.0	4
S26216.0XR1.0	16.00	1.00	16.00	32.00	92.0	4
S26216.0XR2.0	16.00	2.00	16.00	32.00	92.0	4
S26216.0XR2.5	16.00	2.50	16.00	32.00	92.0	4
S26216.0XR3.0	16.00	3.00	16.00	32.00	92.0	4
S26216.0XR4.0	16.00	4.00	16.00	32.00	92.0	4
S26218.0XR0.3	18.00	0.30	18.00	38.00	92.0	4
S26218.0XR0.5	18.00	0.50	18.00	38.00	92.0	4
S26218.0XR1.0	18.00	1.00	18.00	38.00	92.0	4
S26218.0XR2.0	18.00	2.00	18.00	38.00	92.0	4
S26218.0XR3.0	18.00	3.00	18.00	38.00	92.0	4
S26220.0XR0.3	20.00	0.30	20.00	38.00	104.0	4
S26220.0XR0.5	20.00	0.50	20.00	38.00	104.0	4
S26220.0XR1.0	20.00	1.00	20.00	38.00	104.0	4
S26220.0XR2.0	20.00	2.00	20.00	38.00	104.0	4
S26220.0XR2.5	20.00	2.50	20.00	38.00	104.0	4
S26220.0XR3.0	20.00	3.00	20.00	38.00	104.0	4
S26220.0XR4.0	20.00	4.00	20.00	38.00	104.0	4

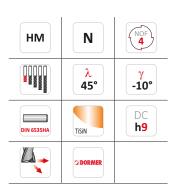


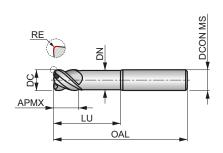
Фреза из твердого сплава с фаской для черновой обработки

Конструкция фрезы имеет угол наклона спирали 40° , переменный шаг зубьев, стружколомающий профиль HRA и геометрию для высокопроизводительного фрезерования труднообрабатываемых материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P4.3	M2.3	M3.3	M4.1	M4.2	S1.3	S2.2	S3.2	S4.2	H1.1	H2.1	H3.1	H3.2
■ 97 J	■ 97 J	■ 991	■ 971	■83 I	■ 70 l	■ 561	■ 40 I	■ 32 l	■ 179 I	■ 106 G	■ 118 G	■97 G


DCON MS с допуском h6; CHW \pm 0.02X45° мм.

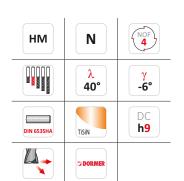

Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(мм)	
S2646.0	6.00	0.10	6.00	13.00	57.0	4
S2648.0	8.00	0.20	8.00	20.00	64.0	4
S26410.0	10.00	0.20	10.00	22.00	72.0	4
S26412.0	12.00	0.20	12.00	26.00	83.0	4
S26414.0	14.00	0.30	14.00	26.00	83.0	4
S26416.0	16.00	0.30	16.00	32.00	92.0	4
S26418.0	18.00	0.30	18.00	32.00	92.0	4
S26420.0	20.00	0.40	20.00	38.00	104.0	4

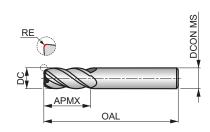
Фреза из твердого сплава с радиусом

Конструкция фрезы имеет короткую режущую часть, угол наклона спирали 45°, уменьшенную шейку и геометрию для высокопроизводительного фрезерования твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■1191 ■706 ■60E ■78G ■64G ■50E ■42B


DCON MS с допуском h6; RE ± 0.01 мм.

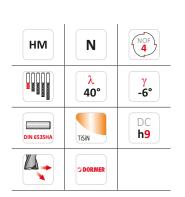

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
S5213.0XR0.3	3.00	0.30	6.00	4.00	60.0	4	14.00	2.80
S5214.0XR0.3	4.00	0.30	6.00	5.00	60.0	4	16.00	3.70
S5214.0XR0.5	4.00	0.50	6.00	5.00	60.0	4	16.00	3.70
S5215.0XR0.3	5.00	0.30	6.00	6.00	60.0	4	18.00	4.60
S5215.0XR0.5	5.00	0.50	6.00	6.00	60.0	4	18.00	4.60
S5216.0XR0.5	6.00	0.50	6.00	7.00	60.0	4	20.00	5.50
S5216.0XR1.0	6.00	1.00	6.00	7.00	60.0	4	20.00	5.50
S5218.0XR0.5	8.00	0.50	8.00	9.00	64.0	4	26.00	7.40
S5218.0XR1.0	8.00	1.00	8.00	9.00	64.0	4	26.00	7.40
S52110.0XR1.0	10.00	1.00	10.00	11.00	70.0	4	31.00	9.20
S52110.0XR2.0	10.00	2.00	10.00	11.00	70.0	4	31.00	9.20
S52112.0XR1.0	12.00	1.00	12.00	13.00	75.0	4	37.00	11.00
S52112.0XR2.0	12.00	2.00	12.00	13.00	75.0	4	37.00	11.00
S52116.0XR1.0	16.00	1.00	16.00	17.00	90.0	4	43.00	15.00
S52116.0XR2.0	16.00	2.00	16.00	17.00	90.0	4	43.00	15.00
S52116.0XR3.0	16.00	3.00	16.00	17.00	90.0	4	43.00	15.00

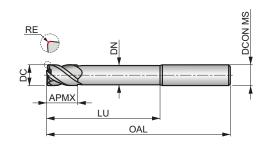
Фреза из твердого сплава с радиусом

Конструкция фрезы имеет угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■ 1191 ■ 70G ■ 60E ■ 78G ■ 64G ■ 50E ■ 42B


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(мм)	
S5231.5XR0.2	1.50	0.20	6.00	4.50	50.0	4
S5232.0XR0.2	2.00	0.20	6.00	6.50	50.0	4
S5233.0XR0.2XD3	3.00	0.20	3.00	9.00	50.0	4
S5233.0XR0.3XD3	3.00	0.30	3.00	9.00	50.0	4
S5233.0XR0.2XD6	3.00	0.20	6.00	9.00	50.0	4
S5233.0XR0.3XD6	3.00	0.30	6.00	9.00	50.0	4
S5233.0XR0.5XD6	3.00	0.50	6.00	9.00	50.0	4
S5234.0XR0.3XD4	4.00	0.30	4.00	12.00	50.0	4
S5234.0XR0.5XD4	4.00	0.50	4.00	12.00	50.0	4
S5234.0XR0.3XD6	4.00	0.30	6.00	12.00	50.0	4
S5234.0XR0.5XD6	4.00	0.50	6.00	12.00	50.0	4
S5235.0XR0.3XD5	5.00	0.30	5.00	15.00	50.0	4
S5235.0XR0.5XD5	5.00	0.50	5.00	15.00	50.0	4
S5235.0XR0.3XD6	5.00	0.30	6.00	15.00	50.0	4
S5235.0XR0.5XD6	5.00	0.50	6.00	15.00	50.0	4
S5236.0XR0.3	6.00	0.30	6.00	16.00	50.0	4
S5236.0XR0.5	6.00	0.50	6.00	16.00	50.0	4
S5236.0XR1.0	6.00	1.00	6.00	16.00	50.0	4
S5238.0XR0.3	8.00	0.30	8.00	20.00	64.0	4
S5238.0XR0.5	8.00	0.50	8.00	20.00	64.0	4
S5238.0XR1.0	8.00	1.00	8.00	20.00	64.0	4
S5238.0XR2.0	8.00	2.00	8.00	20.00	64.0	4
S52310.0XR0.5	10.00	0.50	10.00	22.00	70.0	4
S52310.0XR1.0	10.00	1.00	10.00	22.00	70.0	4
S52310.0XR1.5	10.00	1.50	10.00	22.00	70.0	4
S52310.0XR2.0	10.00	2.00	10.00	22.00	70.0	4
S52312.0XR0.5	12.00	0.50	12.00	25.00	75.0	4
S52312.0XR1.0	12.00	1.00	12.00	25.00	75.0	4
S52312.0XR2.0	12.00	2.00	12.00	25.00	75.0	4
S52312.0XR3.0	12.00	3.00	12.00	25.00	75.0	4
S52316.0XR0.5	16.00	0.50	16.00	32.00	90.0	4

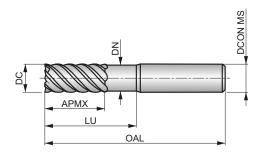

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(мм)	(MM)	(MM)	(мм)	(MM)	
S52316.0XR1.0	16.00	1.00	16.00	32.00	90.0	4
S52316.0XR2.0	16.00	2.00	16.00	32.00	90.0	4
S52316.0XR3.0	16.00	3.00	16.00	32.00	90.0	4

Фреза из твердого сплава удлиненной конструкции с радиусом

Конструкция фрезы имеет короткую режущую часть, угол наклона спирали 40°, уменьшенную шейку и геометрию для высокопроизводительного фрезерования глубоких карманов заготовок из твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

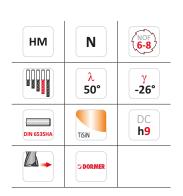
H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■1191 ■70G ■60E ■78G ■64G ■50E ■42B

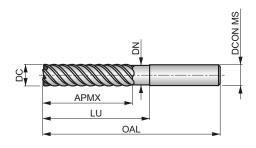

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(мм)	(MM)	(мм)	(мм)	(мм)		(мм)	(мм)
S5243.0XR0.3	3.00	0.30	6.00	5.00	75.0	4	30.00	2.80
S5244.0XR0.3	4.00	0.30	6.00	8.00	75.0	4	32.00	3.70
S5244.0XR0.5	4.00	0.50	6.00	8.00	75.0	4	32.00	3.70
S5245.0XR0.3	5.00	0.30	6.00	9.00	75.0	4	32.00	4.60
S5245.0XR0.5	5.00	0.50	6.00	9.00	75.0	4	32.00	4.60
S5246.0XR0.3	6.00	0.30	6.00	10.00	75.0	4	40.00	5.50
S5246.0XR0.5	6.00	0.50	6.00	10.00	75.0	4	40.00	5.50
S5246.0XR1.0	6.00	1.00	6.00	10.00	75.0	4	40.00	5.50
S5248.0XR0.3	8.00	0.30	8.00	12.00	75.0	4	40.00	7.40
S5248.0XR0.5	8.00	0.50	8.00	12.00	75.0	4	40.00	7.40
S5248.0XR1.0	8.00	1.00	8.00	12.00	75.0	4	40.00	7.40
S52410.0XR0.5	10.00	0.50	10.00	14.00	75.0	4	40.00	9.20
S52410.0XR1.0	10.00	1.00	10.00	14.00	75.0	4	40.00	9.20
S52410.0XR2.0	10.00	2.00	10.00	14.00	75.0	4	40.00	9.20
S52412.0XR0.5	12.00	0.50	12.00	16.00	100.0	4	60.00	11.00
S52412.0XR1.0	12.00	1.00	12.00	16.00	100.0	4	60.00	11.00
S52412.0XR2.0	12.00	2.00	12.00	16.00	100.0	4	60.00	11.00
S52416.0XR0.5	16.00	0.50	16.00	22.00	125.0	4	85.00	15.00
S52416.0XR1.0	16.00	1.00	16.00	22.00	125.0	4	85.00	15.00
S52416.0XR2.0	16.00	2.00	16.00	22.00	125.0	4	85.00	15.00
S52416.0XR3.0	16.00	3.00	16.00	22.00	125.0	4	85.00	15.00

Фреза из твердого сплава для чистовой обработки

Конструкция фрезы имеет угол наклона спирали 50°, уменьшенную шейку и геометрию для высокопроизводительного фрезерования твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

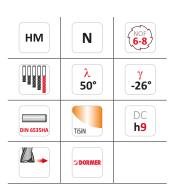

H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■ 1196 ■ 706 ■ 60E ■ 786 ■ 646 ■ 50E ■ 42 A

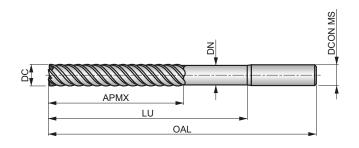

Обозначение	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
S5253.0	3.00	6.00	8.00	50.0	6	20.00	2.80
S5254.0	4.00	6.00	11.00	50.0	6	20.00	3.70
S5256.0	6.00	6.00	15.00	50.0	6	20.00	5.50
S5258.0	8.00	8.00	20.00	64.0	6	30.00	7.40
S52510.0	10.00	10.00	22.00	70.0	6	32.00	9.20
S52512.0	12.00	12.00	25.00	75.0	6	37.00	11.00
S52514.0	14.00	14.00	30.00	90.0	6	44.00	13.00
S52516.0	16.00	16.00	30.00	90.0	8	46.00	15.00
S52518.0	18.00	18.00	35.00	100.0	8	53.00	17.00
S52520.0	20.00	20.00	38.00	100.0	8	58.00	19.00

Фреза из твердого сплава удлиненной конструкции для чистовой обработки

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 50°, уменьшенную шейку и геометрию для высокопроизводительного фрезерования глубоких карманов заготовок из твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

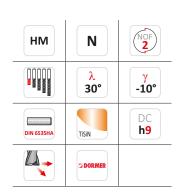

H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■ 96 G ■ 57 G ■ 49 E ■ 63 G ■ 52 G ■ 40 E ■ 34 A

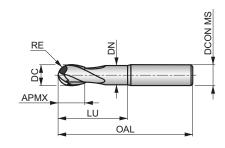

Обозначение	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
S5263.0	3.00	6.00	19.00	75.0	6	30.00	2.80
S5264.0	4.00	6.00	19.00	75.0	6	32.00	3.70
S5266.0	6.00	6.00	31.00	75.0	6	40.00	5.50
S5268.0	8.00	8.00	31.00	75.0	6	40.00	7.40
S52610.0	10.00	10.00	45.00	100.0	6	60.00	9.20
S52612.0	12.00	12.00	50.00	100.0	6	60.00	11.00
S52614.0	14.00	14.00	57.00	125.0	6	85.00	13.00
S52616.0	16.00	16.00	57.00	125.0	8	85.00	15.00
S52618.0	18.00	18.00	57.00	125.0	8	85.00	17.00
\$52620.0	20.00	20.00	57.00	125.0	8	85.00	19.00

Фреза из твердого сплава удлиненной конструкции для чистовой обработки

Конструкция фрезы имеет длинную режущую часть угол наклона спирали 50°, уменьшенную шейку и геометрию для высокопроизводительного фрезерования глубоких карманов заготовок из твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

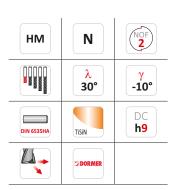

H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■596 ■356 ■30E ■396 ■326 ■25E ■21A

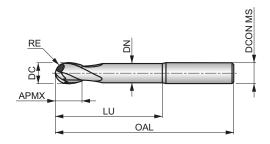

Обозначение	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
S5273.0	3.00	6.00	25.00	100.0	6	60.00	2.80
S5274.0	4.00	6.00	31.00	100.0	6	60.00	3.70
\$5276.0	6.00	6.00	38.00	100.0	6	60.00	5.50
\$5278.0	8.00	8.00	41.00	100.0	6	60.00	7.40
\$52710.0	10.00	10.00	57.00	125.0	6	85.00	9.20
S52712.0	12.00	12.00	75.00	150.0	6	110.00	11.00
\$52716.0	16.00	16.00	75.00	150.0	8	110.00	15.00
S52720.0	20.00	20.00	75.00	150.0	8	110.00	19.00

Сферическая фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и геометрию для высокопроизводительного копировального фрезерования твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■119 F ■70 E ■60 D ■78 E ■64 E ■50 D ■42 A

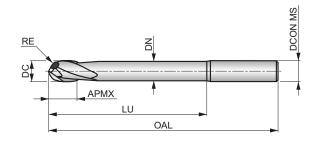

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
S5291.5	1.50	0.75	6.00	3.00	50.0	2	6.00	1.40
S5292.0XD4	2.00	1.00	4.00	4.00	50.0	2	8.00	1.90
S5292.0XD6	2.00	1.00	6.00	4.00	50.0	2	8.00	1.90
S5293.0XD3	3.00	1.50	3.00	5.00	50.0	2	14.00	2.80
S5293.0XD6	3.00	1.50	6.00	5.00	50.0	2	14.00	2.80
S5294.0XD4	4.00	2.00	4.00	8.00	50.0	2	20.00	3.70
S5294.0XD6	4.00	2.00	6.00	8.00	50.0	2	20.00	3.70
S5295.0XD5	5.00	2.50	5.00	9.00	50.0	2	20.00	4.60
S5295.0XD6	5.00	2.50	6.00	9.00	50.0	2	20.00	4.60
S5296.0	6.00	3.00	6.00	10.00	50.0	2	20.00	5.50
S5298.0	8.00	4.00	8.00	12.00	64.0	2	30.00	7.40
S52910.0	10.00	5.00	10.00	14.00	70.0	2	32.00	9.20
S52912.0	12.00	6.00	12.00	16.00	75.0	2	38.00	11.00
S52916.0	16.00	8.00	16.00	32.00	90.0	2	46.00	15.00

Сферическая фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и геометрию для высокопроизводительного копировального фрезерования твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■96 F ■57 E ■49 D ■63 E ■52 E ■40 D ■34 A

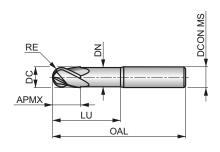

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(мм)	(мм)	(MM)		(MM)	(мм)
S5311.5	1.50	0.75	6.00	3.00	75.0	2	10.00	1.40
S5312.0XD4	2.00	1.00	4.00	4.00	75.0	2	14.00	1.90
S5312.0XD6	2.00	1.00	6.00	4.00	75.0	2	14.00	1.90
S5313.0XD3	3.00	1.50	3.00	5.00	60.0	2	21.00	2.80
S5313.0XD6	3.00	1.50	6.00	5.00	75.0	2	21.00	2.80
S5314.0XD4	4.00	2.00	4.00	8.00	60.0	2	28.00	3.70
S5314.0XD6	4.00	2.00	6.00	8.00	75.0	2	28.00	3.70
S5315.0XD5	5.00	2.50	5.00	9.00	60.0	2	32.00	4.60
S5315.0XD6	5.00	2.50	6.00	9.00	75.0	2	32.00	4.60
S5316.0	6.00	3.00	6.00	10.00	75.0	2	40.00	5.50
S5318.0	8.00	4.00	8.00	12.00	75.0	2	40.00	7.40
S53110.0	10.00	5.00	10.00	14.00	75.0	2	40.00	9.20
S53112.0	12.00	6.00	12.00	16.00	100.0	2	60.00	11.00
S53116.0	16.00	8.00	16.00	32.00	125.0	2	80.00	15.00

Сферическая фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и геометрию для высокопроизводительного копировального фрезерования твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■59 F ■35 E ■30 D ■39 E ■32 E ■25 D ■21 A

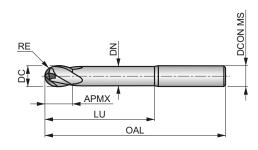

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(мм)	(MM)	(MM)	(мм)	(мм)		(мм)	(MM)
S5332.0XD4	2.00	1.00	4.00	4.00	100.0	2	20.00	1.90
S5332.0XD6	2.00	1.00	6.00	4.00	100.0	2	20.00	1.90
S5333.0XD4	3.00	1.50	4.00	5.00	100.0	2	30.00	2.80
S5333.0XD6	3.00	1.50	6.00	5.00	100.0	2	30.00	2.80
S5334.0XD4	4.00	2.00	4.00	8.00	100.0	2	40.00	3.70
S5334.0XD6	4.00	2.00	6.00	8.00	100.0	2	40.00	3.70
S5335.0XD5	5.00	2.50	5.00	9.00	100.0	2	50.00	4.60
S5335.0XD6	5.00	2.50	6.00	9.00	100.0	2	50.00	4.60
\$5336.0	6.00	3.00	6.00	10.00	100.0	2	60.00	5.50
\$5338.0	8.00	4.00	8.00	12.00	100.0	2	60.00	7.40
\$53310.0	10.00	5.00	10.00	14.00	125.0	2	85.00	9.20
\$53312.0	12.00	6.00	12.00	16.00	125.0	2	85.00	11.00
S53314.0	14.00	7.00	14.00	32.00	150.0	2	110.00	13.00
\$53316.0	16.00	8.00	16.00	32.00	150.0	2	110.00	15.00

Сферическая фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и геометрию для высокопроизводительного копировального фрезерования твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

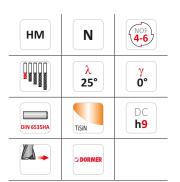

H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■119E ■70 D ■60 C ■78 D ■64 D ■50 C ■42 A

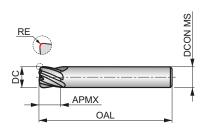

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(мм)		(MM)	(MM)
S5343.0	3.00	1.50	6.00	5.00	50.0	4	14.00	2.80
S5344.0	4.00	2.00	6.00	8.00	50.0	4	20.00	3.70
S5345.0	5.00	2.50	6.00	9.00	50.0	4	20.00	4.60
S5346.0	6.00	3.00	6.00	10.00	50.0	4	20.00	5.50
S5348.0	8.00	4.00	8.00	12.00	64.0	4	30.00	7.40
S53410.0	10.00	5.00	10.00	14.00	70.0	4	32.00	9.20
S53412.0	12.00	6.00	12.00	16.00	75.0	4	38.00	11.00
S53414.0	14.00	7.00	14.00	32.00	90.0	4	44.00	13.00
S53416.0	16.00	8.00	16.00	32.00	90.0	4	46.00	15.00

Сферическая фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и геометрию для высокопроизводительного копировального фрезерования твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■96 E ■57 D ■49 C ■63 D ■52 D ■40 C ■34 A


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
\$5353.0	3.00	1.50	6.00	5.00	75.0	4	21.00	2.80
S5354.0	4.00	2.00	6.00	8.00	75.0	4	28.00	3.70
\$5355.0	5.00	2.50	6.00	9.00	75.0	4	32.00	4.60
\$5356.0	6.00	3.00	6.00	10.00	75.0	4	40.00	5.50
\$5358.0	8.00	4.00	8.00	12.00	75.0	4	40.00	7.40
\$53510.0	10.00	5.00	10.00	14.00	75.0	4	40.00	9.20
\$53512.0	12.00	6.00	12.00	16.00	100.0	4	60.00	11.00
S53514.0	14.00	7.00	14.00	32.00	125.0	4	80.00	13.00
\$53516.0	16.00	8.00	16.00	32.00	125.0	4	80.00	15.00

Высокоподачная фреза из твердого сплава с радиусом

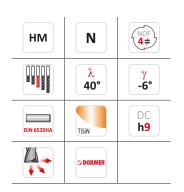
Конструкция фрезы имеет короткую режущую часть, угол наклона спирали 25° и геометрию для высокопроизводительного фрезерования твердых материалов до 63 HRC с высокой подачей. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■205 ■122 ■104 D ■135 E ■111 E ■86 D ■73 D

DCON MS с допуском h6; RE ± 0.01 мм.

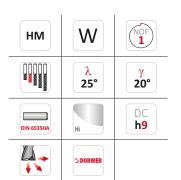

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(мм)	(MM)	
S5366.0XR1.0	6.00	1.00	6.00	6.00	60.0	4
S5368.0XR2.0	8.00	2.00	8.00	8.00	64.0	6
S53610.0XR2.0	10.00	2.00	10.00	10.00	75.0	6
S53612.0XR2.0	12.00	2.00	12.00	12.00	75.0	6

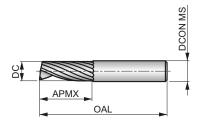


Фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев и геометрию с торцевой подточкой для высокопроизводительного фрезерования твердых материалов до 70 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■ 1191 ■ 70G ■ 60E ■ 78G ■ 64G ■ 50E ■ 42B

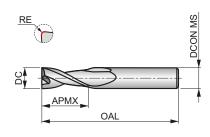

Обозначение	DC	DCON MS	АРМХ	OAL	NOF
	(мм)	(MM)	(мм)	(MM)	
S5611.0	1.00	6.00	3.00	50.0	4
S5611.5	1.50	6.00	4.50	50.0	4
S5612.0	2.00	6.00	6.50	50.0	4
S5612.5	2.50	6.00	6.50	50.0	4
S5613.0	3.00	6.00	9.00	50.0	4
S5614.0	4.00	6.00	12.00	50.0	4
\$5615.0	5.00	6.00	15.00	50.0	4
S5616.0	6.00	6.00	20.00	60.0	4
S5618.0	8.00	8.00	20.00	64.0	4
\$56110.0	10.00	10.00	22.00	70.0	4
S56112.0	12.00	12.00	25.00	75.0	4
S56114.0	14.00	14.00	32.00	90.0	4
\$56116.0	16.00	16.00	32.00	90.0	4
\$56118.0	18.00	18.00	38.00	100.0	4
\$56120.0	20.00	20.00	38.00	100.0	4

Фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 25° и позитивную геометрию с 1 режущим зубом для обработки цветных сплавов в условиях низкой жесткости. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2
■ 709 R	■533 R	■357 R	■357 P	■320 P	■ 229 P	■ 373 P	■219 P	■112 P	■373 S	■ 144 S

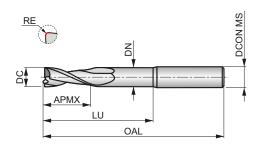

Обозначение	DC	DCON MS	АРМХ	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
S6372.0	2.00	2.00	10.00	40.0	1
S6373.0	3.00	3.00	12.00	40.0	1
S6374.0	4.00	4.00	15.00	50.0	1
S6375.0	5.00	5.00	16.00	50.0	1
S6376.0	6.00	6.00	20.00	60.0	1
S6378.0	8.00	8.00	22.00	63.0	1
S63710.0	10.00	10.00	25.00	72.0	1
S63712.0	12.00	12.00	30.00	83.0	1

Фреза из твердого сплава с радиусом

Конструкция фрезы имеет угол наклона спирали 30° и позитивную геометрию для высокопроизводительной обработки цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


N1.1 **N1.2 N1.3** N2.1 N2.2 **N2.3** N3.1 N3.2 N3.3 N4.1 N4.2 ■ 709 P ■ 533 P ■357 P **357 0 320 0 229 0 373 0 2190 1120** ■ 373 R ■ 144 R


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(мм)	
S6102.0	2.00	0.10	4.00	6.50	40.0	2
S6103.0XD3	3.00	0.10	3.00	9.00	40.0	2
S6103.0XD6	3.00	0.10	6.00	9.00	50.0	2
S6104.0XD4	4.00	0.10	4.00	12.00	50.0	2
S6104.0XD6	4.00	0.10	6.00	12.00	50.0	2
S6105.0	5.00	0.10	6.00	15.00	50.0	2
S6106.0	6.00	0.10	6.00	20.00	50.0	2
S6108.0	8.00	0.10	8.00	20.00	64.0	2
S61010.0	10.00	0.10	10.00	22.00	75.0	2
S61012.0	12.00	0.10	12.00	25.00	75.0	2
S61014.0	14.00	0.10	14.00	32.00	90.0	2
S61016.0	16.00	0.10	16.00	32.00	90.0	2
S61020.0	20.00	0.10	20.00	38.00	100.0	2

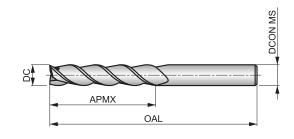
Фреза из твердого сплава удлиненной конструкции с радиусом

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и позитивную геометрию для высокопроизводительной обработки глубоких карманов заготовок из цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2
638 P	■ 480 P	■ 321 P	3210	■ 288 0	206.0	3360	■ 197 0	1 01 0	■ 336 R	■ 130 R

DCON MS с допуском h6; RE ± 0.02 мм.

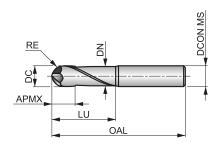

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
S6113.0XD3	3.00	0.10	3.00	9.00	40.0	2	15.00	2.80
S6113.0XD6	3.00	0.10	6.00	9.00	50.0	2	15.00	2.80
S6114.0XD4	4.00	0.10	4.00	12.00	50.0	2	20.00	3.70
S6114.0XD6	4.00	0.10	6.00	12.00	50.0	2	20.00	3.70
S6115.0	5.00	0.10	6.00	15.00	50.0	2	20.00	4.60
S6116.0	6.00	0.10	6.00	16.00	80.0	2	40.00	5.50
S6118.0	8.00	0.10	8.00	20.00	80.0	2	40.00	7.40
S61110.0	10.00	0.10	10.00	22.00	100.0	2	60.00	9.20
S61112.0	12.00	0.10	12.00	25.00	100.0	2	60.00	11.00
S61114.0	14.00	0.10	14.00	32.00	125.0	2	75.00	13.00
S61116.0	16.00	0.10	16.00	32.00	125.0	2	75.00	15.00
S61120.0	20.00	0.10	20.00	38.00	125.0	2	75.00	19.00

Фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет угол наклона спирали 40°, длинную режущую часть и позитивную геометрию для высокопроизводительной обработки цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2
■ 638 G	■ 480 G	■321 G	■ 321 F	■ 288 F	■ 206 F	■ 336 F	■ 197 F	■ 101 F	■336 I	■130 I


Обозначение	DC	DCON MS	АРМХ	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
S6143.0XD3	3.00	3.00	19.00	60.0	3
S6143.0XD6	3.00	6.00	19.00	75.0	3
S6144.0XD4	4.00	4.00	19.00	60.0	3
S6144.0XD6	4.00	6.00	19.00	75.0	3
S6145.0	5.00	6.00	19.00	75.0	3
S6146.0	6.00	6.00	31.00	75.0	3
S6148.0	8.00	8.00	41.00	100.0	3
S61410.0	10.00	10.00	50.00	100.0	3
S61412.0	12.00	12.00	50.00	100.0	3
S61414.0	14.00	14.00	57.00	125.0	3
S61416.0	16.00	16.00	57.00	125.0	3

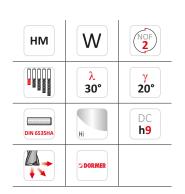
Сферическая фреза из твердого сплава

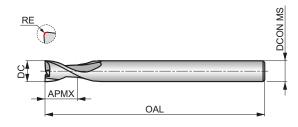
Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и позитивную геометрию для высокопроизводительной копировальной обработки цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2
■ 709 N	■ 533 N	357 N	■ 357 N	■ 320 N	■ 229 N	■ 373 N	■ 219 N	■ 112 N	373 0	144 0

DCON MS с допуском h6; RE +0/-0.02 мм.


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(мм)		(MM)	(MM)
S6291.0 1)	1.00	0.50	4.00	0.80	50.0	2	10.00	0.90
S6291.5 1)	1.50	0.75	4.00	1.20	50.0	2	12.00	1.40
S6292.0 1)	2.00	1.00	4.00	1.60	60.0	2	18.00	1.90
S6293.0	3.00	1.50	6.00	5.00	57.0	2	20.00	2.80
S6294.0	4.00	2.00	6.00	6.00	57.0	2	20.00	3.70
S6295.0	5.00	2.50	6.00	7.00	57.0	2	20.00	4.60
S6296.0	6.00	3.00	6.00	8.00	57.0	2	20.00	5.50
S6298.0	8.00	4.00	8.00	10.00	64.0	2	25.00	7.40
S62910.0	10.00	5.00	10.00	12.00	75.0	2	35.00	9.20
S62912.0	12.00	6.00	12.00	14.00	75.0	2	35.00	11.00
S62916.0	16.00	8.00	16.00	18.00	90.0	2	45.00	15.00
S62920.0	20.00	10.00	20.00	22.00	100.0	2	50.00	19.00


¹⁾ Передний угол 11°.

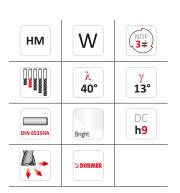
Фреза из твердого сплава удлиненной конструкции с радиусом

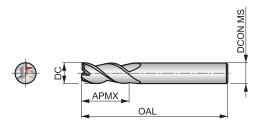
Конструкция фрезы имеет угол наклона спирали 30°, короткую режущую часть, уменьшенный хвостовик и позитивную геометрию для высокопроизводительной обработки глубоких карманов заготовок из цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2
■ 709 N	■ 533 N	■ 357 N	■ 357 N	■ 320 N	■ 229 N	■ 373 N	■219 N	■112 N	373 0	144 0

Уменьшенный диаметр хвостовика DCON MS с допуском h6; RE ± 0.02 мм.


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S6386.2	6.20	0.10	6.00	8.00	100.0	2
S6388.2	8.20	0.10	8.00	10.00	100.0	2
S63810.3	10.30	0.10	10.00	14.00	125.0	2
S63812.3	12.30	0.10	12.00	16.00	125.0	2
S63816.3	16.30	0.10	16.00	20.00	125.0	2
S63820.3	20.30	0.10	20.00	25.00	125.0	2



Фреза из твердого сплава

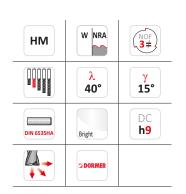
Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев, стружколомающую геометрию и позитивную геометрию для высокопроизводительной обработки цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

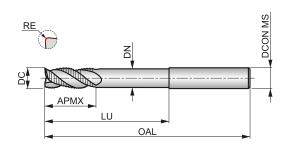
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N1.2 N1.3 N2.1 N2.2 N2.3 N3.1 N3.2 N3.3 N4.1 N4.2 **780 0** 6080 **393 0** 393 N 352 N 252 N 410 N **241** N **123** N 410 P ■ 158 P

DCON MS с допуском h6.

Обозначение DC DCON MS (мм) (мм)	APMX	OAL	NOF
\$6501.0 1.00 4.00	3.00	40.0	3
S6501.5 1.50 4.00	4.50	40.0	3
S6502.0 2.00 4.00	6.50	40.0	3
S6502.5 2.50 4.00	6.50	40.0	3
S6503.0XD3 3.00 3.00	9.00	40.0	3
S6503.0XD6 3.00 6.00	9.00	50.0	3
S6504.0XD4 4.00 4.00	12.00	50.0	3
S6504.0XD6 4.00 6.00	12.00	50.0	3
\$6505.0 5.00 6.00	15.00	50.0	3
S6506.0 6.00 6.00	16.00	50.0	3
S6508.0 8.00 8.00	20.00	64.0	3
S65010.0 10.00 10.00	22.00	70.0	3
S65012.0 12.00 12.00	25.00	75.0	3
S65014.0 14.00 14.00	32.00	90.0	3
S65016.0 16.00 16.00	32.00	90.0	3
S65020.0 ¹⁾ 20.00 20.00	38.00	100.0	3


 $^{^{1)}\, \}mbox{He}$ имеет переменного шага и стружколомающего элемента.



Фреза из твердого сплава удлиненной конструкции с радиусом для черновой обработки

Конструкция фрезы имеет угол наклона спирали 40°, уменьшенную шейку, переменный шаг зубьев, стружколомающий профиль NRA и позитивную геометрию для высокопроизводительной черновой обработки цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N1.1 **N1.2** N1.3 **N2.1** N2.2 **N2.3** N3.1 N3.2 N3.3 N4.1 N4.2 **709 0 533 0 357 0** ■ 357 N 320 N 229 N ■ 373 N ■219 N ■ 112 N ■ 373 P ■ 144 P

DCON MS с допуском h6; RE ±0.02 мм.

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(мм)	(MM)	(MM)	(MM)		(мм)	(MM)
S6546.0	6.00	0.10	6.00	13.00	75.0	3	40.00	5.50
S6548.0	8.00	0.10	8.00	20.00	75.0	3	40.00	7.40
S65410.0	10.00	0.10	10.00	22.00	100.0	3	60.00	9.20
S65412.0	12.00	0.12	12.00	26.00	100.0	3	60.00	11.00
S65416.0	16.00	0.16	16.00	32.00	125.0	3	75.00	15.00
S65420.0	20.00	0.20	20.00	40.00	150.0	3	100.00	19.00

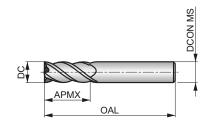
Фреза из твердого сплава с радиусом

Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев и позитивную геометрию для высокопроизводительной обработки цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N1.2 N1.3 N2.1 N2.2 N2.3 N3.1 N3.2 N3.3 N4.1 N4.2 **709 0 533 0 357 0** 357 N 320 N 229 N ■ 373 N ■ 219 N ■ 112 N ■ 373 P ■ 144 P

DCON MS с допуском h6; RE ± 0.01 мм.


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(мм)	(мм)	
S6623.0XR0.3	3.00	0.30	6.00	9.00	57.0	4
S6624.0XR0.3	4.00	0.30	6.00	12.00	57.0	4
S6624.0XR0.5	4.00	0.50	6.00	12.00	57.0	4
S6625.0XR0.3	5.00	0.30	6.00	15.00	57.0	4
S6625.0XR0.5	5.00	0.50	6.00	15.00	57.0	4
S6626.0XR0.5	6.00	0.50	6.00	16.00	57.0	4
S6626.0XR1.0	6.00	1.00	6.00	16.00	57.0	4
S6626.0XR2.0	6.00	2.00	6.00	16.00	57.0	4
S6628.0XR0.5	8.00	0.50	8.00	20.00	64.0	4
S6628.0XR1.0	8.00	1.00	8.00	20.00	64.0	4
S6628.0XR2.0	8.00	2.00	8.00	20.00	64.0	4
S66210.0XR0.5	10.00	0.50	10.00	22.00	72.0	4
S66210.0XR1.0	10.00	1.00	10.00	22.00	72.0	4
S66210.0XR2.0	10.00	2.00	10.00	22.00	72.0	4
S66212.0XR1.0	12.00	1.00	12.00	26.00	83.0	4
S66212.0XR2.0	12.00	2.00	12.00	26.00	83.0	4
S66212.0XR2.5	12.00	2.50	12.00	26.00	83.0	4
S66212.0XR3.0	12.00	3.00	12.00	26.00	83.0	4
S66216.0XR1.0	16.00	1.00	16.00	32.00	92.0	4
S66216.0XR2.0	16.00	2.00	16.00	32.00	92.0	4
S66216.0XR3.0	16.00	3.00	16.00	32.00	92.0	4
S66216.0XR4.0	16.00	4.00	16.00	32.00	92.0	4
S66220.0XR2.0	20.00	2.00	20.00	38.00	104.0	4
S66220.0XR4.0	20.00	4.00	20.00	38.00	104.0	4

Фреза из твердого сплава

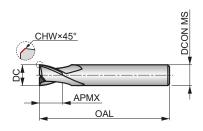
Конструкция фрезы имеет угол наклона спирали 40° и позитивную геометрию для высокопроизводительной обработки абразивных материалов. Алмазоподобное покрытие повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N5.1 ■ 350 G

DCON MS с допуском h6.

Обозначение	DC	DCON MS	APMX	OAL	NOF
	(мм)	(MM)	(мм)	(мм)	
S6121.0	1.00	3.00	3.00	50.0	4
S6121.5	1.50	3.00	4.50	50.0	4
S6122.0	2.00	3.00	6.50	50.0	4
S6122.5	2.50	3.00	6.50	50.0	4
S6123.0	3.00	3.00	9.00	50.0	4
S6124.0	4.00	4.00	12.00	50.0	4
S6125.0	5.00	5.00	15.00	50.0	4
S6126.0	6.00	6.00	20.00	60.0	4
S6128.0	8.00	8.00	20.00	64.0	4
S61210.0	10.00	10.00	22.00	70.0	4
S61212.0	12.00	12.00	25.00	75.0	4


S802HA

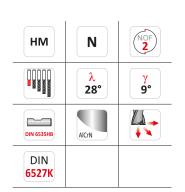
Фреза из твердого сплава с фаской

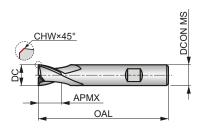
Конструкция фрезы имеет короткую режущую часть, угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

					. ,								
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 206 K	■ 230 K	■ 238 K	■ 176 K	■ 155 K	■ 137 J	■143 K	■ 114 J	■ 97 J	■84 J	■ 72 J	■58 J	■ 121 K	■ 102 K
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■ 107 K	■ 89 J	Z 75 J	■ 99 J	■ 85 J	Z 76 J	Z 75 J	Z 63 J	■ 205 K	■ 152 K	■ 114 K	■ 210 K	■ 171 K	■137 J
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■ 186 K	■ 143 K	■115 J	■173 J	■ 131 J	■ 95 J	■82 J	■68 J	■ 196 J	■ 147 J	■ 114 J	∠ 408 K	Z 307 K	■ 206 K
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1	
■ 206 K	■ 184 K	■132 K	■ 215 K	■ 125 K	■ 64 K	₹1215 K	₹ 183 K	₹ 181 J	■ 171 J	■ 155 J	■ 141 J	■ 132 I	

DCON MS с допуском h6; DC \leq 7.00 мм: CHW \pm 0.03X45° мм; DC>7.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S802HA1.0	1.00	_	3.00	3.00	38.0	2
S802HA1.5	1.50	_	3.00	3.00	38.0	2
S802HA2.0	2.00	-	6.00	3.00	50.0	2
S802HA2.5	2.50	0.08	6.00	3.00	50.0	2
S802HA3.0	3.00	0.08	6.00	4.00	50.0	2
S802HA3.5	3.50	0.08	6.00	4.00	50.0	2
S802HA4.0	4.00	0.13	6.00	5.00	54.0	2
S802HA4.5	4.50	0.13	6.00	5.00	54.0	2
S802HA5.0	5.00	0.13	6.00	6.00	54.0	2
S802HA6.0	6.00	0.13	6.00	7.00	54.0	2
S802HA7.0	7.00	0.13	8.00	8.00	58.0	2
S802HA8.0	8.00	0.20	8.00	9.00	58.0	2
S802HA9.0	9.00	0.20	10.00	10.00	66.0	2
S802HA10.0	10.00	0.20	10.00	11.00	66.0	2
S802HA12.0	12.00	0.20	12.00	12.00	73.0	2
S802HA14.0	14.00	0.20	14.00	14.00	75.0	2
S802HA16.0	16.00	0.20	16.00	16.00	82.0	2
S802HA18.0	18.00	0.20	18.00	18.00	84.0	2
S802HA20.0	20.00	0.30	20.00	20.00	92.0	2


S802HB

Фреза из твердого сплава с фаской

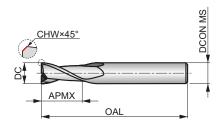
Конструкция фрезы имеет короткую режущую часть, угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 206 K	230 K	■ 238 K	■ 176 K	■155 K	■ 137 J	■ 143 K	■ 114 J	■97 J	■84 J	■ 72 J	■ 58 J	■ 121 K	■ 102 K
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■ 107 K	■ 89 J	Z 75 J	■99 J	■85 J	Z 76 J	Z 75 J	Z 63 J	■ 205 K	■ 152 K	■ 114 K	■ 210 K	■ 171 K	■137 J
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■ 186 K	■ 143 K	■ 115 J	■ 173 J	■ 131 J	■ 95 J	■ 82 J	■ 68 J	■ 196 J	■ 147 J	■ 114 J	∠ 408 K	Z 307 K	■ 206 K
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1	
■ 206 K	■ 184 K	■ 132 K	■ 215 K	■125 K	∠ 64 K	≥ 215 K	≥ 83 K	≥ 81 J	Z 71 J	≥ 55 J	∠ 41 J	Z 32 J	

DCON MS c допуском h6; DC \leq 7.00 мм: CHW \pm 0.03X45° мм; DC>7.00 мм: CHW \pm 0.05X45° мм.

Обозначение	DC (MM)	CHW (MM)	DCON MS	APMX	OAL (MAM)	NOF
COASURS A						2
S802HB2.0	2.00		6.00	3.00	50.0	2
S802HB2.5	2.50	0.08	6.00	3.00	50.0	2
S802HB3.0	3.00	0.08	6.00	4.00	50.0	2
S802HB3.5	3.50	0.08	6.00	4.00	50.0	2
S802HB4.0	4.00	0.13	6.00	5.00	54.0	2
S802HB4.5	4.50	0.13	6.00	5.00	54.0	2
S802HB5.0	5.00	0.13	6.00	6.00	54.0	2
S802HB6.0	6.00	0.13	6.00	7.00	54.0	2
S802HB7.0	7.00	0.13	8.00	8.00	58.0	2
S802HB8.0	8.00	0.20	8.00	9.00	58.0	2
S802HB9.0	9.00	0.20	10.00	10.00	66.0	2
S802HB10.0	10.00	0.20	10.00	11.00	66.0	2
S802HB12.0	12.00	0.20	12.00	12.00	73.0	2
S802HB14.0	14.00	0.20	14.00	14.00	75.0	2
S802HB16.0	16.00	0.20	16.00	16.00	82.0	2
S802HB18.0	18.00	0.20	18.00	18.00	84.0	2
S802HB20.0	20.00	0.30	20.00	20.00	92.0	2


S812HA

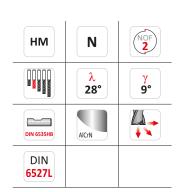
Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 166 K	■ 186 K	■ 192 K	■ 142 K	■ 125 K	■ 111 J	■115 K	■93 J	■ 78 J	■ 68 J	■59 J	■ 47 J	■97 K	■81 K
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■85 K	■ 71 J	■79 J	■ 68 J	■ 61 J	■ 60 J	■166 K	■123 K	■ 92 K	■ 170 K	■ 138 K	■110 J	■ 150 K	■ 115 K
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 93 J	■ 140 J	■105 J	■ 77 J	■ 66 J	■ 56 J	■ 159 J	■ 118 J	■92 J	≥ 330 K	Z 247 K	■ 166 K	■ 166 K	■ 148 K
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1			
107 K	■ 173 K	■ 101 K	■152 K	■1173 K	■167 K	■ 72.1	= 641	= 40 I	■ 30 I	■ 30 I			

DCON MS с допуском h6; DC \leq 7.00 мм: CHW \pm 0.03X45° мм; DC>7.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL (MM)	NOF
60421142.0		(MM)				2
S812HA2.0	2.00		6.00	6.00	57.0	2
S812HA2.5	2.50	0.08	6.00	7.00	57.0	2
S812HA3.0	3.00	0.08	6.00	7.00	57.0	2
S812HA3.5	3.50	0.08	6.00	7.00	57.0	2
S812HA4.0	4.00	0.13	6.00	8.00	57.0	2
S812HA4.5	4.50	0.13	6.00	8.00	57.0	2
S812HA5.0	5.00	0.13	6.00	10.00	57.0	2
S812HA6.0	6.00	0.13	6.00	10.00	57.0	2
S812HA7.0	7.00	0.13	8.00	13.00	63.0	2
S812HA8.0	8.00	0.20	8.00	16.00	63.0	2
S812HA9.0	9.00	0.20	10.00	16.00	72.0	2
S812HA10.0	10.00	0.20	10.00	19.00	72.0	2
S812HA12.0	12.00	0.20	12.00	22.00	83.0	2
S812HA14.0	14.00	0.20	14.00	22.00	83.0	2
S812HA16.0	16.00	0.20	16.00	26.00	92.0	2
S812HA18.0	18.00	0.20	18.00	26.00	92.0	2
S812HA20.0	20.00	0.30	20.00	32.00	104.0	2

S812HB

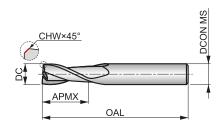
Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

	17	,			. ,								
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 166 K	■ 186 K	■ 192 K	■ 142 K	■125 K	■111 J	■ 115 K	■93 J	■78 J	■68 J	■ 59 J	■ 47 J	■97 K	■81 K
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■85 K	■ 71 J	■ 79 J	■68 J	■ 61 J	■ 60 J	■ 166 K	■ 123 K	■92 K	■ 170 K	■ 138 K	■110 J	■ 150 K	■115 K
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 93 J	■140 J	■ 105 J	■77 J	■66 J	■ 56 J	■ 159 J	■ 118 J	■92 J	Z 330 K	Z 247 K	■ 166 K	■ 166 K	■ 148 K
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1			
■ 107 K	■ 173 K	■ 101 K	■ 152 K	■1173 K	■ 167 K	■72 J	■64 J	■49 I	■38 J	■ 30 J			

DCON MS c допуском h6; DC \leq 7.00 мм: CHW \pm 0.03X45° мм; DC>7.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	АРМХ	OAL	NOF
	(MM)	(мм)	(MM)	(MM)	(мм)	
S812HB2.0	2.00	0.00	6.00	6.00	57.0	2
S812HB2.5	2.50	0.08	6.00	7.00	57.0	2
S812HB3.0	3.00	0.08	6.00	7.00	57.0	2
S812HB3.5	3.50	0.08	6.00	7.00	57.0	2
S812HB4.0	4.00	0.13	6.00	8.00	57.0	2
S812HB4.5	4.50	0.13	6.00	8.00	57.0	2
S812HB5.0	5.00	0.13	6.00	10.00	57.0	2
S812HB6.0	6.00	0.13	6.00	10.00	57.0	2
S812HB7.0	7.00	0.13	8.00	13.00	63.0	2
S812HB8.0	8.00	0.20	8.00	16.00	63.0	2
S812HB9.0	9.00	0.20	10.00	16.00	72.0	2
S812HB10.0	10.00	0.20	10.00	19.00	72.0	2
S812HB12.0	12.00	0.20	12.00	22.00	83.0	2
S812HB14.0	14.00	0.20	14.00	22.00	83.0	2
S812HB16.0	16.00	0.20	16.00	26.00	92.0	2
S812HB18.0	18.00	0.20	18.00	26.00	92.0	2
S812HB20.0	20.00	0.30	20.00	32.00	104.0	2

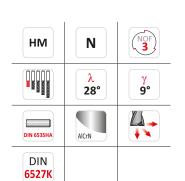
Фреза из твердого сплава с фаской

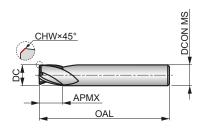
Конструкция фрезы имеет угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 146 K	■ 164 K	■ 169 K	■ 125 K	■ 110 K	■ 98 J	■101 K	■82 J	■69 J	■ 61 J	■52 J	■41 J	■85 K	■72 K
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■76 K	■62 J	■70 J	■ 60 J	■ 54 J	■ 53 J	■145 K	■108 K	■81 K	■ 150 K	■ 122 K	■97 J	■ 133 K	■ 102 K
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 82 J	■ 123 J	■93 J	■ 68 J	■ 59 J	■ 48 J	■ 139 J	■ 105 J	■81 J	≥ 287 K	Z 216 K	■ 144 K	■ 144 K	■ 129 K
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1			
■ 03 K	■ 152 K	■ 99 K	■145 K	1152 K	■ 50 K	■ 50 I	■ 51 I	■30 I	= 20 I	■ 23 I			

DCON MS с допуском h6; DC \leq 7.00 мм: CHW \pm 0.03X45° мм; DC>7.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(мм)	(MM)	(MM)	(MM)	
S8222.0	2.00	-	6.00	8.00	57.0	2
S8222.5	2.50	0.08	6.00	12.00	57.0	2
S8223.0	3.00	0.08	6.00	12.00	57.0	2
S8224.0	4.00	0.13	6.00	14.00	57.0	2
S8225.0	5.00	0.13	6.00	16.00	57.0	2
S8226.0	6.00	0.13	6.00	19.00	57.0	2
S8227.0	7.00	0.13	8.00	19.00	63.0	2
S8228.0	8.00	0.20	8.00	19.00	63.0	2
S8229.0	9.00	0.20	10.00	21.00	72.0	2
S82210.0	10.00	0.20	10.00	22.00	72.0	2
S82212.0	12.00	0.20	12.00	25.00	83.0	2
S82214.0	14.00	0.20	14.00	30.00	83.0	2
S82216.0	16.00	0.20	16.00	32.00	92.0	2
S82218.0	18.00	0.20	18.00	32.00	92.0	2
S82220.0	20.00	0.30	20.00	38.00	104.0	2


S803HA

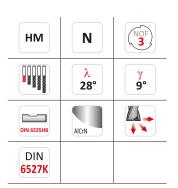
Фреза из твердого сплава с фаской

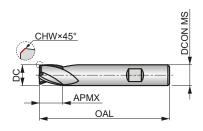
Конструкция фрезы имеет короткую режущую часть, угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 206 J	■230 J	■ 238 J	■ 176 J	■ 155 J	■137 I	■ 143 J	■ 114 l	■ 97 l	■ 841	■ 72 l	■ 58 l	■ 121 J	■ 102 J
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■107 J	■ 891	⊿ 75 l	■ 991	■85 I	Z 761	 175 I	∠ 63 l	■ 205 J	■ 152 J	■114 J	■210 J	■ 171 J	■ 137 I
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■ 186 J	■ 143 J	■ 115 I	■ 173 l	■ 131 l	■95 I	■82 I	■ 68 l	■196 l	■ 147 I	■ 1141	∠ 408 K	Z 307 K	■206 K
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1	
■ 206 J	■184 J	■ 132 J	■ 215 J	■ 125 J	∠ 64 J	≥ 215 J	≥ 83 J	≥ 811	Z 71 I	 55 l	■ 411	≥ 32 l	

DCON MS c допуском h6; DC \leq 7.00 мм: CHW \pm 0.03X45° мм; DC>7.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(мм)	(мм)	(MM)	(MM)	(мм)	
S803HA1.0	1.00	_	3.00	3.00	38.0	3
S803HA1.5	1.50	_	3.00	3.00	38.0	3
S803HA2.0	2.00	-	6.00	3.00	50.0	3
S803HA2.5	2.50	0.08	6.00	3.00	50.0	3
S803HA2.8	2.80	0.08	6.00	4.00	50.0	3
S803HA3.0	3.00	0.08	6.00	4.00	50.0	3
S803HA3.5	3.50	0.08	6.00	4.00	50.0	3
S803HA3.8	3.80	0.08	6.00	5.00	54.0	3
S803HA4.0	4.00	0.13	6.00	5.00	54.0	3
S803HA4.5	4.50	0.13	6.00	5.00	54.0	3
S803HA4.8	4.80	0.13	6.00	6.00	54.0	3
S803HA5.0	5.00	0.13	6.00	6.00	54.0	3
S803HA6.0	6.00	0.13	6.00	7.00	54.0	3
S803HA7.0	7.00	0.13	8.00	8.00	58.0	3
S803HA8.0	8.00	0.20	8.00	9.00	58.0	3
S803HA9.0	9.00	0.20	10.00	10.00	66.0	3
S803HA10.0	10.00	0.20	10.00	11.00	66.0	3
S803HA12.0	12.00	0.20	12.00	12.00	73.0	3
S803HA14.0	14.00	0.20	14.00	14.00	75.0	3
S803HA16.0	16.00	0.20	16.00	16.00	82.0	3
S803HA18.0	18.00	0.20	18.00	18.00	84.0	3
S803HA20.0	20.00	0.30	20.00	20.00	92.0	3


S803HB

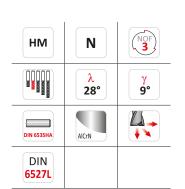
Фреза из твердого сплава с фаской

Конструкция фрезы имеет короткую режущую часть, угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 206 J	■ 230 J	■238 J	■ 176 J	■ 155 J	■ 137 I	■ 143 J	■ 114 l	■97 I	■84 I	72 I	■ 58 l	■ 121 J	■ 102 J
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■ 107 J	■ 891	 ✓ 75 I	■ 991	■ 851	Z 761	Z 75 I	 ■63 l	■ 205 J	■ 152 J	■ 114 J	■210 J	■ 171 J	■137 I
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■ 186 J	■ 143 J	■ 115 I	■ 173 I	■131 I	■ 951	■82 I	■ 681	■ 196 l	■ 147 I	■ 114 l	∠ 408 K	Z 307 K	■ 206 K
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1	
■ 206 J	■ 184 J	■132 J	215 J	■ 125 J	∠ 64 J	Z 215 J	≥ 83 J	Z 81 I	 71	≥ 55 l	∠ 41 l	■ 321	

DCON MS c допуском h6; DC \leq 7.75 мм: CHW \pm 0.03X45° мм; DC>7.75 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(мм)	(MM)	(MM)	(MM)	
S803HB2.0	2.00	_	6.00	3.00	50.0	3
S803HB2.5	2.50	0.08	6.00	3.00	50.0	3
S803HB2.8	2.80	0.08	6.00	4.00	50.0	3
S803HB3.0	3.00	0.08	6.00	4.00	50.0	3
S803HB3.5	3.50	0.08	6.00	4.00	50.0	3
S803HB3.8	3.80	0.08	6.00	5.00	54.0	3
S803HB4.0	4.00	0.13	6.00	5.00	54.0	3
S803HB4.5	4.50	0.13	6.00	5.00	54.0	3
S803HB4.8	4.80	0.13	6.00	6.00	54.0	3
S803HB5.0	5.00	0.13	6.00	6.00	54.0	3
S803HB5.75	5.75	0.13	6.00	7.00	54.0	3
S803HB6.0	6.00	0.13	6.00	7.00	54.0	3
S803HB6.75	6.75	0.13	8.00	8.00	58.0	3
S803HB7.0	7.00	0.13	8.00	8.00	58.0	3
S803HB7.75	7.75	0.13	8.00	9.00	58.0	3
S803HB8.0	8.00	0.20	8.00	9.00	58.0	3
S803HB9.0	9.00	0.20	10.00	10.00	66.0	3
S803HB9.7	9.70	0.20	10.00	11.00	66.0	3
S803HB10.0	10.00	0.20	10.00	11.00	66.0	3
S803HB11.7	11.70	0.20	12.00	12.00	73.0	3
S803HB12.0	12.00	0.20	12.00	12.00	73.0	3
S803HB14.0	14.00	0.20	14.00	14.00	75.0	3
S803HB16.0	16.00	0.20	16.00	16.00	82.0	3
S803HB18.0	18.00	0.20	18.00	18.00	84.0	3
S803HB20.0	20.00	0.30	20.00	20.00	92.0	3

S813HA

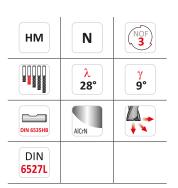
Фреза из твердого сплава с фаской

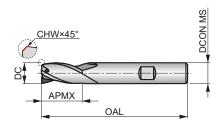
Конструкция фрезы имеет угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■166 J	■ 186 J	■ 192 J	■ 142 J	■ 125 J	■ 1111	■ 115 J	■ 93 I	■ 78 l	■ 68 l	■ 59 l	∠ 47 l	■ 97 J	■81 J
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■85 J	■ 711	Z 791	∠ 681	 ■611	 ■601	■ 166 J	■ 123 J	■92 J	■ 170 J	■ 138 J	■110 I	■ 150 J	■115 J
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 931	■ 140 I	■ 105 I	■ 77 l	■ 66 l	■ 561	■ 1591	■118 I	■ 92 l	≥ 330 K	Z 247 K	■ 166 K	■ 166 J	■148 J
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1			
■107 I	■173 I	■ 101 I	■ 152 I	■1173 I	2 167 I	■ 172 I	641	491	1381	2 1301			

DCON MS c допуском h6; DC \leq 7.00 мм: CHW \pm 0.03X45° мм; DC>7.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC (MM)	CHW	DCON MS	APMX	OAL (MM)	NOF
S813HA2.0	2.00	0.00	6.00	6.00	57.0	3
S813HA2.5	2.50	0.08	6.00	7.00	57.0	3
S813HA3.0	3.00	0.08	6.00	7.00	57.0	3
S813HA3.5	3.50	0.08	6.00	7.00	57.0	3
S813HA4.0	4.00	0.13	6.00	8.00	57.0	3
S813HA4.5	4.50	0.13	6.00	8.00	57.0	3
S813HA5.0	5.00	0.13	6.00	10.00	57.0	3
S813HA6.0	6.00	0.13	6.00	10.00	57.0	3
S813HA7.0	7.00	0.13	8.00	13.00	63.0	3
S813HA8.0	8.00	0.20	8.00	16.00	63.0	3
S813HA9.0	9.00	0.20	10.00	16.00	72.0	3
S813HA10.0	10.00	0.20	10.00	19.00	72.0	3
S813HA12.0	12.00	0.20	12.00	22.00	83.0	3
S813HA14.0	14.00	0.20	14.00	22.00	83.0	3
S813HA16.0	16.00	0.20	16.00	26.00	92.0	3
S813HA18.0	18.00	0.20	18.00	26.00	92.0	3
S813HA20.0	20.00	0.30	20.00	32.00	104.0	3


S813HB

Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 166 J	■ 186 J	■ 192 J	■142 J	■ 125 J	■ 1111	■ 115 J	■ 93 l	■ 78 l	■ 681	■ 59 l	∠ 47 l	■ 97 J	■ 81 J
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 85 J	■ 711		Z 68 I	Z 61 I	 ∠ 60 l	■ 166 J	■ 123 J	■92 J	■ 170 J	■ 138 J	■110 I	■ 150 J	■115 J
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 931	■ 140 I	■ 105 I	■ 77 l	■ 66 l	■ 561	■ 159 l	■ 118 I	■ 921	Z 330 K	Z 247 K	■ 166 K	■ 166 J	■ 148 J
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1			
■ 107 J	■ 173 J	■ 101 J	 52 J	∠ 173 J	∠ 67 J	 72 l	 ■641	∠ 1491	■ 381	■ 301			

DCON MS с допуском h6; DC \leq 7.00 мм: CHW \pm 0.03X45° мм; DC>7.00 мм: CHW \pm 0.05X45° мм.

Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(мм)	(MM)	(мм)	(MM)	
S813HB2.0	2.00	0.00	6.00	6.00	57.0	3
S813HB2.5	2.50	0.08	6.00	7.00	57.0	3
S813HB3.0	3.00	0.08	6.00	7.00	57.0	3
S813HB3.5	3.50	0.08	6.00	7.00	57.0	3
S813HB4.0	4.00	0.13	6.00	8.00	57.0	3
S813HB4.5	4.50	0.13	6.00	8.00	57.0	3
S813HB5.0	5.00	0.13	6.00	10.00	57.0	3
S813HB6.0	6.00	0.13	6.00	10.00	57.0	3
S813HB7.0	7.00	0.13	8.00	13.00	63.0	3
S813HB8.0	8.00	0.20	8.00	16.00	63.0	3
S813HB9.0	9.00	0.20	10.00	16.00	72.0	3
S813HB10.0	10.00	0.20	10.00	19.00	72.0	3
S813HB12.0	12.00	0.20	12.00	22.00	83.0	3
S813HB14.0	14.00	0.20	14.00	22.00	83.0	3
S813HB16.0	16.00	0.20	16.00	26.00	92.0	3
S813HB18.0	18.00	0.20	18.00	26.00	92.0	3
S813HB20.0	20.00	0.30	20.00	32.00	104.0	3

Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

DCON MS

••					
		P9			

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112. P1.2 P1.3 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 P2.1 M1.1 ■ 145 J ■ 162 J ■ 167 J ■ 124 J ■ 109 J ■97 l ■ 100 J ■ 81 l ■ 68 l ■ 60 l **■**511 **∠**41 l ■ 84 J ■ 71 J M2.1 **M2.2** M3.1 M3.2 M3.3 M4.1 K1.1 K1.2 K1.3 K2.1 K2.2 K2.3 K3.1 K3.2 ■75 J **■**611 **Z**691 59 l **Z**53 l **■**521 ■ 144 J ■ 107 J ■80 J ■ 149 J ■ 121 J **■**961 ■ 132 J ■101 J K4.1 K4.2 K4.3 K4.4 K5.1 **N1.1** N1.2 N1.3 **N2.1 N2.2** K4.5 ■ 80 I **■**811 ■ 122 I **■**921 **■**581 **■**481 **■** 138 l ■ 104 l **Z** 284 K ■ 143 K **■**67 l **Z** 214 K ■ 143 J ■128 J N3.1 N3.2 **N2.3** N3.3 N4.1 N4.2 **S1.2 S3.1 S4.1 S1.1 S2.1**

■ 100 l

Z 77 l

∠ 58 l

∠ 45 l

■ 113 l

DCON MS c допуском h6; DC \leq 7.00 мм: CHW \pm 0.03X45° мм; DC>7.00 мм: CHW \pm 0.05X45° мм.

∠ 45 J

∠ 150 J

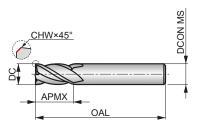
Z 58 J

■ 87 J

■ 92 J

■150 J

Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S8232.0	2.00	-	6.00	8.00	57.0	3
S8232.5	2.50	0.08	6.00	12.00	57.0	3
S8233.0	3.00	0.08	6.00	12.00	57.0	3
S8234.0	4.00	0.13	6.00	14.00	57.0	3
S8235.0	5.00	0.13	6.00	16.00	57.0	3
S8236.0	6.00	0.13	6.00	19.00	57.0	3
S8237.0	7.00	0.13	8.00	19.00	63.0	3
S8238.0	8.00	0.20	8.00	19.00	63.0	3
S8239.0	9.00	0.20	10.00	21.00	72.0	3
S82310.0	10.00	0.20	10.00	22.00	72.0	3
S82312.0	12.00	0.20	12.00	25.00	83.0	3
S82314.0	14.00	0.20	14.00	30.00	83.0	3
S82316.0	16.00	0.20	16.00	32.00	92.0	3
S82318.0	18.00	0.20	18.00	32.00	92.0	3
S82320.0	20.00	0.30	20.00	38.00	104.0	3


S804HA

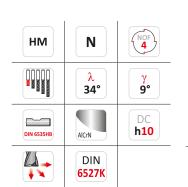
Фреза из твердого сплава с фаской

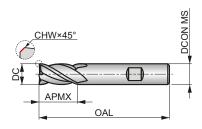
Конструкция фрезы имеет угол наклона спирали 34° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 206 J	■ 230 J	■238 J	■176 J	■ 155 J	■ 137 I	■ 143 J	■ 114 l	■97 I	■84 I	■ 72 l	■ 58 l	■ 121 J	■ 102 J
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■107 J	■ 891	⊿ 75 l	■ 991	■ 851	 176	Z 75 I	 63 I	■ 205 J	■ 152 J	■ 114 J	■210 J	■ 171 J	■137 I
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■ 186 J	■ 143 J	■ 115 I	■ 173 I	■ 131 l	■ 951	■82 I	■ 681	■196 I	■ 147 I	■ 1141	Z 408 J	Z 307 J	Z 206 J
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1	
Z 206 J	■ 184 J	■ 132 J	■ 215 J	■ 125 J	∠ 64 J	Z 215 J	■ 83 J	Z 81 I	Z 71 I	 55 l	∠ 41 l	Z 32 l	

DCON MS с допуском h6; DC \leq 8.00 мм: CHW \pm 0.03X45° мм; DC>8.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S804HA2.0	2.00	_	6.00	4.00	50.0	4
S804HA3.0	3.00	0.08	6.00	5.00	50.0	4
S804HA4.0	4.00	0.13	6.00	8.00	54.0	4
S804HA5.0	5.00	0.13	6.00	9.00	54.0	4
S804HA6.0	6.00	0.13	6.00	10.00	54.0	4
S804HA8.0	8.00	0.13	8.00	12.00	58.0	4
S804HA10.0	10.00	0.20	10.00	14.00	66.0	4
S804HA12.0	12.00	0.20	12.00	16.00	73.0	4
S804HA16.0	16.00	0.20	16.00	22.00	82.0	4
S804HA20.0	20.00	0.30	20.00	26.00	92.0	4
S804HA25.0	25.00	0.30	25.00	32.00	121.0	4

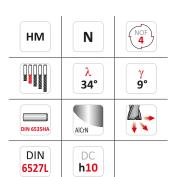

S804HB

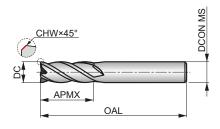
Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 34° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112. P2.2 P2.3 P3.2 P3.3 P4.1 P4.2 P1.2 P1.3 P2.1 P3.1 P4.3 M1.1 ■206 J **230** J **238** J ■ 176 J ■ 155 J ■ 137 l ■ 143 J **114** I ■ 97 l **84** l **1**72 l **■** 58 l ■ 121 J ■102 J K1.3 K2.1 M2.1 **M2.2 M2.3** M3.1 M3.2 M3.3 M4.1 M4.2 K1.1 K1.2 K2.2 **K2.3** ■107 J **■**891 **Z**75∣ **■**991 ■85 I **Z**76∣ **Z**75∣ **∠**631 ■ 205 J ■ 152 J ■114 J ■210 J ■ 171 J ■ 137 l K3.1 K4.2 K4.4 K4.5 K5.2 **N1.1** N1.2 **N1.3** K4.1 K4.3 ■143 J **■** 115 l ■ 173 l **■** 131 l ■82 I **■** 68 l **114** I ■186 J **■**951 ■196 I ■ 147 I **∠** 408 J **Z** 307 J **Z** 206 J N2.1 **N2.2 N2.3** N3.1 N3.2 N4.2 **S4.1** N3.3 N4.1 **S1.1 S1.2 S2.1 S3.1 Z** 206 J **Z** 184 J **Z** 132 J ■ 215 J ■ 125 J **∠** 64 J **Z** 215 J **≥**83 J **∠** 81 l **Z** 71 l **∠** 55 l **∠** 41 l **Z** 32 l

DCON MS c допуском h6; DC \leq 8.00 мм: CHW \pm 0.03X45° мм; DC>8.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(мм)	(мм)	
S804HB2.0	2.00	_	6.00	4.00	50.0	4
S804HB3.0	3.00	0.08	6.00	5.00	50.0	4
S804HB4.0	4.00	0.13	6.00	8.00	54.0	4
S804HB5.0	5.00	0.13	6.00	9.00	54.0	4
S804HB6.0	6.00	0.13	6.00	10.00	54.0	4
S804HB8.0	8.00	0.13	8.00	12.00	58.0	4
S804HB10.0	10.00	0.20	10.00	14.00	66.0	4
S804HB12.0	12.00	0.20	12.00	16.00	73.0	4
S804HB16.0	16.00	0.20	16.00	22.00	82.0	4
S804HB20.0	20.00	0.30	20.00	26.00	92.0	4
S804HB25.0	25.00	0.30	25.00	32.00	121.0	4


S814HA

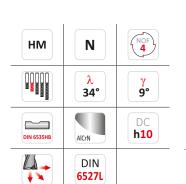
Фреза из твердого сплава с фаской

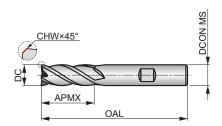
Конструкция фрезы имеет угол наклона спирали 34° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 166 J	■ 186 J	■ 192 J	■ 142 J	■ 125 J	■ 1111	■ 115 J	■93 I	■ 781	■ 681	■ 59 l	∠ 47 l	■ 97 J	■ 81 J
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 85 J	■ 71 l	 79 I	Z 68∣	Z 61 I	 60 l	■ 166 J	■ 123 J	■92 J	■ 170 J	■ 138 J	■110 I	■ 150 J	■115 J
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 931	■ 140 I	■ 105 I	■ 77 l	■ 661	■ 561	■ 159 l	■ 118 l	■ 921	Z 330 J	Z 247 J	Z 166 J	Z 166 J	■ 148 J
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1			
∠ 107 J	■ 173 J	■101 J	≥ 52 J	∠ 173 J	∠ 67 J	 72 l	 64 l	∠ 491	■ 381	Z 30 l			

DCON MS с допуском h6; DC \leq 8.00 мм: CHW \pm 0.03X45° мм; DC>8.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S814HA2.0	2.00	0.00	6.00	7.00	57.0	4
S814HA3.0	3.00	0.08	6.00	8.00	57.0	4
S814HA4.0	4.00	0.13	6.00	11.00	57.0	4
S814HA5.0	5.00	0.13	6.00	13.00	57.0	4
S814HA6.0	6.00	0.13	6.00	13.00	57.0	4
S814HA8.0	8.00	0.13	8.00	19.00	63.0	4
S814HA10.0	10.00	0.20	10.00	22.00	72.0	4
S814HA12.0	12.00	0.20	12.00	26.00	83.0	4
S814HA16.0	16.00	0.20	16.00	32.00	92.0	4
S814HA20.0	20.00	0.30	20.00	38.00	104.0	4
S814HA25.0	25.00	0.30	25.00	45.00	121.0	4


S814HB

Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 34° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 ■ 166 J ■ 186 J ■ 192 J ■ 142 J ■ 125 J **■**1111 ■ 115 J ■ 93 l **78** l **■** 68 l **■** 59 l **∠** 47 l ■ 97 J ■81 J M2.1 **M2.2** M3.1 M3.2 M3.3 M4.1 **K1.1** K1.2 K1.3 K2.1 K2.2 K2.3 K3.1 K3.2 ■ 85 J **■**711 **Z**79∣ **Z**68∣ **Z**61∣ **Z**60∣ ■ 166 J ■ 123 J ■92 J ■ 170 J ■ 138 J ■110 I ■ 150 J ■115 J K4.2 K4.3 K4.4 K5.1 **N1.1** N1.2 N1.3 N2.1 **N2.2** K4.5 ■93 I ■ 140 I ■ 105 I **■**561 ■ 159 I **■** 118 l **■** 92 l **Z** 330 J **■** 77 l ■ 66 l **Z** 247 J **∠** 166 J **■** 166 J **■** 148 J N3.1 **N2.3** N3.2 N3.3 N4.1 N4.2 **S1.2 S3.1 S4.1 S1.1 S2.1 ■** 107 J ■ 173 J ■ 101 J **Z** 52 J **Z** 173 J **Z** 67 J **∠**72 l **∠** 64 l **∠** 49 l **Z** 38 l **∠**30 l

DCON MS c допуском h6; DC \leq 8.00 мм: CHW \pm 0.03X45° мм; DC>8.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S814HB2.0	2.00	0.00	6.00	7.00	57.0	4
S814HB3.0	3.00	0.08	6.00	8.00	57.0	4
S814HB4.0	4.00	0.13	6.00	11.00	57.0	4
S814HB5.0	5.00	0.13	6.00	13.00	57.0	4
S814HB6.0	6.00	0.13	6.00	13.00	57.0	4
S814HB8.0	8.00	0.13	8.00	19.00	63.0	4
S814HB10.0	10.00	0.20	10.00	22.00	72.0	4
S814HB12.0	12.00	0.20	12.00	26.00	83.0	4
S814HB16.0	16.00	0.20	16.00	32.00	92.0	4
S814HB20.0	20.00	0.30	20.00	38.00	104.0	4
S814HB25.0	25.00	0.30	25.00	45.00	121.0	4

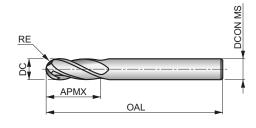
Сферическая фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для высокопроизводительного копировального фрезерования большинства материалов. Покрытие X-CEED повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 161 F	■ 181 F	■ 186 F	■138 F	■121 F	■ 108 F	■ 112 F	■ 90 F	■76 F	■ 66 F	■ 57 F	∠ 46 F	■ 94 F	■ 79 F
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 83 F	■ 69 F	Z 77 F	∠ 66 F	 59 E	 ■ 58 E	■ 161 F	■ 119 F	■89 F	■ 165 F	■ 134 F	■ 107 F	■ 146 F	■ 112 F
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 90 F	■ 136 F	■ 102 F	■ 75 F	■ 64 E	■ 54 E	■ 154 F	■ 115 F	■89 F	Z 355 G	Z 267 G	Z 179 G	 179 F	■ 160 F
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1			
■ 115 F	■ 187 F	■ 109 F	Z 56 F	■ 187 F	Z 72 F	Z 126 F	■ 112 F	≥ 86 E	∠ 65 E	■ 51 E			

DCON MS с допуском h6; RE ± 0.01 мм.


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(мм)	(MM)	(мм)	
S5011.0	1.00	0.50	3.00	3.00	38.0	2
S5011.5	1.50	0.75	3.00	3.00	38.0	2
S5012.0	2.00	1.00	3.00	6.00	38.0	2
S5012.5	2.50	1.25	3.00	7.00	38.0	2
S5013.0	3.00	1.50	3.00	7.00	38.0	2
S5014.0	4.00	2.00	6.00	8.00	57.0	2
S5015.0	5.00	2.50	6.00	10.00	57.0	2
S5016.0	6.00	3.00	6.00	10.00	57.0	2
S5017.0	7.00	3.50	8.00	13.00	63.0	2
S5018.0	8.00	4.00	8.00	16.00	63.0	2
S5019.0	9.00	4.50	10.00	16.00	72.0	2
\$50110.0	10.00	5.00	10.00	19.00	72.0	2
S50112.0	12.00	6.00	12.00	22.00	83.0	2
S50116.0	16.00	8.00	16.00	26.00	92.0	2

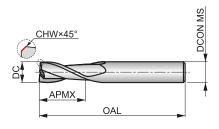
Сферическая фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для высокопроизводительного копировального фрезерования большинства материалов. Покрытие X-CEED повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■161 E	■ 181 E	■ 186 E	■ 138 E	■ 121 E	■ 108 E	■ 112 E	■90 E	■76 E	■ 66 E	■ 57 E	Z 46 E	■ 94 E	■ 79 E
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 83 E	■ 69 E	Z 77 E	Z 66 E	 59 D	 ■ 58 D	■ 161 E	■119 E	■89 E	■ 165 E	■ 134 E	■ 107 E	■ 146 E	■112 E
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 90 E	■ 136 E	■ 102 E	■75 E	■64 D	■54 D	■ 154 E	■ 115 E	■89 E	⊿ 355 F	Z 267 F	 179 F	■ 179 E	■ 160 E
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1			
■ 115 E	■ 187 E	■ 109 E	≥ 56 E	∠ 187 E	Z 72 E	∠ 126 E	■ 112 E	∠ 86 D	∠ 65 D	 51 D			

DCON MS с допуском h6; RE +0/-0.01 мм.


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S5113.0	3.00	1.50	6.00	8.00	80.0	4
S5114.0	4.00	2.00	6.00	11.00	80.0	4
S5115.0	5.00	2.50	6.00	13.00	80.0	4
S5116.0	6.00	3.00	6.00	13.00	80.0	4
S5117.0	7.00	3.50	8.00	16.00	100.0	4
S5118.0	8.00	4.00	8.00	19.00	100.0	4
S5119.0	9.00	4.50	10.00	19.00	100.0	4
\$51110.0	10.00	5.00	10.00	22.00	100.0	4
S51112.0	12.00	6.00	12.00	26.00	100.0	4
S51116.0	16.00	8.00	16.00	32.00	100.0	4

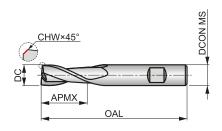
Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для высокопроизводительного фрезерования большинства материалов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	K1.1	K1.2	K1.3
■ 106 K	■ 119 K	■123 K	■ 91 K	■ 80 K	Z 71 J	■ 66 K	■53 J	∠ 45 J	■ 40 J	Z 34 J	■80 K	 ≤ 59 K	■ 44 K
K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3
■98 K	■80 K	Z 64 J	■ 87 K	■ 67 K	Z 54 J	■81 J	■61 J	∠ 45 J	■ 38 J	⊿ 32 J	■91 J	■ 69 J	Z 53 J
N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S1.3
355 K	267 K	■ 179 K	■ 179 K	1160 K	1115 K	■ 187 K	■ 109 K	■ 56 K	187 K	72 K	■38 J	36 J	15 J

DCON MS c допуском h6; DC≤10.00 мм: CHW \pm 0.03X45° мм; DC>10.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(мм)	(MM)	(мм)	(MM)	
S9022.0	2.00	0.08	3.00	6.00	38.0	2
S9022.5	2.50	0.08	3.00	9.00	38.0	2
S9023.0	3.00	0.08	3.00	12.00	38.0	2
S9024.0	4.00	0.08	4.00	14.00	50.0	2
S9025.0	5.00	0.13	5.00	16.00	50.0	2
S9026.0	6.00	0.13	6.00	19.00	57.0	2
S9027.0	7.00	0.13	8.00	19.00	63.0	2
S9028.0	8.00	0.13	8.00	19.00	63.0	2
S9029.0	9.00	0.13	10.00	21.00	72.0	2
S90210.0	10.00	0.18	10.00	22.00	72.0	2
S90212.0	12.00	0.20	12.00	25.00	73.0	2
S90214.0	14.00	0.20	14.00	30.00	83.0	2
S90216.0	16.00	0.20	16.00	32.00	92.0	2
S90218.0	18.00	0.20	18.00	32.00	92.0	2
S90220.0	20.00	0.30	20.00	38.00	104.0	2

Фреза из твердого сплава с фаской

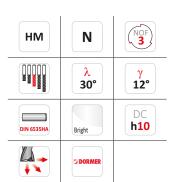
Конструкция фрезы имеет угол наклона спирали 30° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие TiAlN повышает стойкость и производительность.

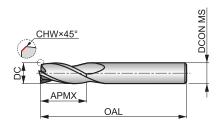
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112. P1.1 P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 ■ 132 K ■ 148 K ■ 153 K ■ 113 K ■100 K ■88 J ■ 98 K ■ 79 J ■67 J ■59 J ■ 50 J **Z** 41 J ■ 100 K ■74 K K1.3 K2.1 **K2.2** K3.1 K4.1 K5.1 K4.3 K4.4 ■56 K ■107 K ■ 87 K ■ 70 J ■ 95 K ■72 K ■59 J ■88 J ■67 J ■49 J ■ 42 J ■ 35 J ■ 100 J ■75 J **N1.1 N1.2 N1.3 N2.1 N2.2 N2.3** N3.1 N3.2 N3.3 N4.1 N4.2 N4.3 **S1.1** ■ 58 J **Z** 296 K ■ 149 K ■149 K **Z**47 K **Z** 222 K ■133 K ■ 96 K ■ 156 K ■91 K 156 K **Z** 60 K **Z** 64 K ■ 47 J **S1.2 S1.3**

DCON MS с допуском h6; DC \leq 10.00 мм: CHW \pm 0.03X45° мм; DC>10.00 мм: CHW \pm 0.05X45° мм. Продукция этой серии доступна в наборах S991.

Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S9222.0 1)	2.00	0.08	3.00	6.00	38.0	2
S9222.5 1)	2.50	0.08	3.00	9.00	38.0	2
S9223.0 1)	3.00	0.08	3.00	12.00	38.0	2
S9224.0 1)	4.00	0.08	4.00	14.00	50.0	2
S9225.0 1)	5.00	0.13	5.00	16.00	50.0	2
S9226.0	6.00	0.13	6.00	19.00	57.0	2
S9227.0	7.00	0.13	8.00	19.00	63.0	2
S9228.0	8.00	0.13	8.00	19.00	63.0	2
S9229.0	9.00	0.13	10.00	21.00	72.0	2
S92210.0	10.00	0.18	10.00	22.00	72.0	2
S92212.0	12.00	0.20	12.00	25.00	73.0	2
S92214.0	14.00	0.20	14.00	30.00	83.0	2
S92216.0	16.00	0.20	16.00	32.00	92.0	2
S92218.0	18.00	0.20	18.00	32.00	92.0	2
S92220.0	20.00	0.30	20.00	38.00	104.0	2

¹⁾ Цилиндрический хвостовик.


∠ 45 J

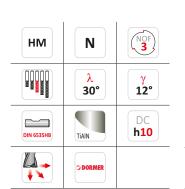

Z 20 J

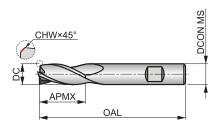
Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для высокопроизводительного фрезерования большинства материалов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	K1.1	K1.2	K1.3
■ 106 J	■119 J	■123 J	■91 J	■ 80 J	Z 71 I	■ 66 J	■ 53 l	∠ 45 l	■40 I	Z 341	■80 J	 59 J	∠ 44 J
K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3
■ 98 J	■ 80 J	Z 64 I	■ 87 J	■ 67 J	 ■ 54 I	■81 I	■ 611	∠ 145 I	■ 381	Z 32 I	■ 911	■ 691	 ■ 53 l
N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S1.3
Z 355 K	■ 267 K	■ 179 K	■179 J	Z 160 J	■ 115 J	■ 187 J	■ 109 J	■56 J	■ 187 J	Z 172 J	■381	Z 361	∠ 43 I


DCON MS c допуском h6; DC \leq 9.00 мм: CHW \pm 0.03X45° мм; DC>9.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(мм)	(MM)	(мм)	(MM)	
S9032.0	2.00	0.08	3.00	6.00	38.0	3
S9032.5	2.50	0.08	3.00	9.00	38.0	3
S9033.0	3.00	0.08	3.00	12.00	38.0	3
S9034.0	4.00	0.08	4.00	14.00	50.0	3
S9035.0	5.00	0.13	5.00	16.00	50.0	3
S9036.0	6.00	0.13	6.00	19.00	57.0	3
S9037.0	7.00	0.13	8.00	19.00	63.0	3
S9038.0	8.00	0.13	8.00	19.00	63.0	3
S9039.0	9.00	0.13	10.00	21.00	72.0	3
S90310.0	10.00	0.20	10.00	22.00	72.0	3
S90312.0	12.00	0.20	12.00	25.00	73.0	3
S90314.0	14.00	0.20	14.00	30.00	83.0	3
S90316.0	16.00	0.20	16.00	32.00	92.0	3
S90318.0	18.00	0.20	18.00	32.00	92.0	3
S90320.0	20.00	0.30	20.00	38.00	104.0	3

Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие TiAIN повышает стойкость и производительность.

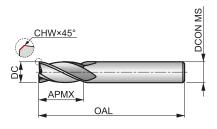
Применени	е инструмент	а, начальные	е значения ск	орости резан	ия (м/мин) и	и индекс пода	чи. Подача и	поправочны	е коэффицие	нты определ	яются по таб.	пицам, начин	ая с стр. 112.
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	K1.1	K1.2
■132 J	■ 148 J	■ 153 J	■ 113 J	■ 100 J	■88 I	■ 98 J	■ 79 l	■ 67 l	■ 591	■ 50 l	∠ 41 I	■ 100 J	■74 J
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 56 J	■ 107 J	■ 87 J	7 01	■95 J	■72 J	■ 591	■ 88 I	■ 67 l	49 I	42 I	■ 35 l	■ 100 I	■ 75 l
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1
■ 581	≥ 296 K	Z 222 K	■ 149 K	■ 149 J	■ 133 J	■96 J	■ 156 J	■91 J	Z 47 J	■ 156 J	∠ 60 J	Z 64 J	■ 47 I
S1.2	S1.3												

DCON MS c gonyckom h6; DC \leq 9.00 mm: CHW \pm 0.03X45° mm; DC $>$ 9.00 mm: CHW \pm 0.05X45° l
Продукция этой серии доступна в наборах S991.

(MM) (MM) (MM)	(MM) 38.0	
	38.0	
59332.0 1) 2.00 0.08 3.00 6.00	5010	3
S9332.5 1) 2.50 0.08 3.00 9.00	38.0	3
S9333.0 ¹⁾ 3.00 0.08 3.00 12.00	38.0	3
S9334.0 ¹⁾ 4.00 0.08 4.00 14.00	50.0	3
S9335.0 ¹⁾ 5.00 0.13 5.00 16.00	50.0	3
S9336.0 6.00 0.13 6.00 19.00	57.0	3
S9337.0 7.00 0.13 8.00 19.00	63.0	3
S9338.0 8.00 0.13 8.00 19.00	63.0	3
\$9339.0 9.00 0.13 10.00 21.00	72.0	3
S93310.0 10.00 0.20 10.00 22.00	72.0	3
S93312.0 12.00 0.20 12.00 25.00	73.0	3
S93314.0 14.00 0.20 14.00 30.00	83.0	3
S93316.0 16.00 0.20 16.00 32.00	92.0	3
\$93318.0 18.00 0.20 18.00 32.00	92.0	3
\$93320.0 20.00 0.30 20.00 38.00	104.0	3

¹⁾ Цилиндрический хвостовик.

Z 45 l

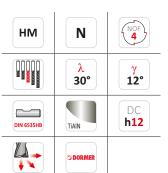

201

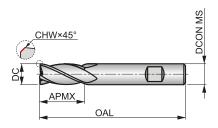
Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для высокопроизводительного фрезерования большинства материалов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	K1.1	K1.2
■ 106 J	■119 J	■123 J	■91 J	■ 80 J	Z 71 I	■ 66 J	■53 I	∠ 45 l	■40 I	∠ 341	∠ 18 l	■ 80 J	∠ 59 J
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
∠ 44 J	■98 J	■80 J	Z 641	■ 87 J	■ 67 J	 ■ 54 I	■81 I	■ 611	∠ 45 I	■ 381	Z 32 I	■ 911	■ 691
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2
 ■ 53	⊿ 355 J	■267 J	■179 J	■ 179 J	■ 160 J	■ 115 J	■ 187 J	■ 109 J	■56 J	■ 187 J	Z 72 J	■381	Z 361
S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2							
∠ 43 l	∠ 40 l	≥ 351	■ 301	 25 l	Z 23 I	Z 20 I							


DCON MS с допуском h6; DC \leq 9.00 мм: CHW \pm 0.03X45° мм; DC>9.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(мм)	(MM)	(MM)	
S9042.0	2.00	0.08	3.00	6.00	38.0	4
S9042.5	2.50	0.08	3.00	9.00	38.0	4
S9043.0	3.00	0.08	3.00	12.00	38.0	4
S9044.0	4.00	0.08	4.00	14.00	50.0	4
S9045.0	5.00	0.13	5.00	16.00	50.0	4
S9046.0	6.00	0.13	6.00	19.00	57.0	4
S9047.0	7.00	0.13	8.00	19.00	63.0	4
S9048.0	8.00	0.13	8.00	19.00	63.0	4
S9049.0	9.00	0.13	10.00	21.00	72.0	4
S90410.0	10.00	0.20	10.00	22.00	72.0	4
S90412.0	12.00	0.20	12.00	25.00	73.0	4
S90414.0	14.00	0.20	14.00	30.00	83.0	4
S90416.0	16.00	0.20	16.00	32.00	92.0	4
S90418.0	18.00	0.20	18.00	32.00	92.0	4
S90420.0	20.00	0.30	20.00	38.00	104.0	4

Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие TiAlN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 ■ 132 J ■ 148 J ■ 153 J ■ 113 J ■ 100 J ■88 I ■ 98 J **■** 79 l ■ 67 l **■** 59 l ■ 50 l **∠**411 ■ 100 J ■ 74 J K2.2 K1.3 K2.1 **K2.3** K3.1 K3.3 K4.1 K4.2 K4.3 K4.4 K5.1 ■56 J ■107 J ■ 87 J **■**70 l ■95 J ■72 J **■**591 ■88 I **■** 67 l **4**9 l **42** l ■35 l ■ 100 I **■**75 l N1.1 **N1.2** N1.3 **N2.1 N2.2 N2.3** N3.1 N3.2 N3.3 N4.1 N4.2 N4.3 **S1.1 ■**581 **Z** 296 J ■ 149 J ■ 149 J ■ 133 J ■ 156 J **Z** 222 J ■96 J ■91 J **Z** 47 J **∠** 156 J **Z** 60 J **Z** 64 J **47** l **S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.2 S4.1 ∠** 45 l **∠** 45 l **∠** 60 l **∠**491 **∠** 45 l **Z** 35 l **∠** 35 l **28** I

DCON MS с допуском h6; DC<9.00 мм: CHW \pm 0.03X45° мм; DC>9.00 мм: CHW \pm 0.05X45° мм. Продукция этой серии доступна в наборах S991.

Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(мм)	(MM)	(MM)	(MM)	
S9442.0 1)	2.00	0.08	3.00	6.00	38.0	4
S9442.5 1)	2.50	0.08	3.00	9.00	38.0	4
S9443.0 1)	3.00	0.08	3.00	12.00	38.0	4
S9444.0 1)	4.00	0.08	4.00	14.00	50.0	4
S9445.0 1)	5.00	0.13	5.00	16.00	50.0	4
S9446.0	6.00	0.13	6.00	19.00	57.0	4
S9447.0	7.00	0.13	8.00	19.00	63.0	4
S9448.0	8.00	0.13	8.00	19.00	63.0	4
S9449.0	9.00	0.13	10.00	21.00	72.0	4
S94410.0	10.00	0.20	10.00	22.00	72.0	4
S94412.0	12.00	0.20	12.00	25.00	73.0	4
S94414.0	14.00	0.20	14.00	30.00	83.0	4
S94416.0	16.00	0.20	16.00	32.00	92.0	4
S94418.0	18.00	0.20	18.00	32.00	92.0	4
S94420.0	20.00	0.30	20.00	38.00	104.0	4

¹⁾ Цилиндрический хвостовик.

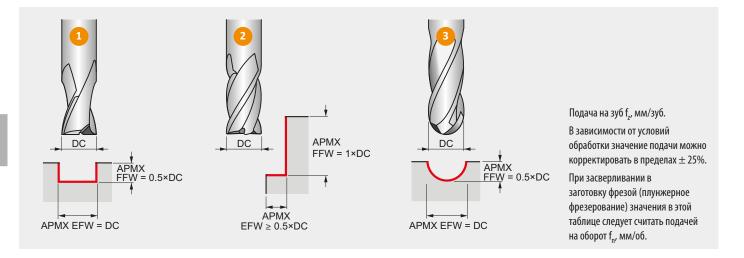
Набор фрез из твердого сплава В набор входят фрезы S922, S933 или S944 (2, 3 или 4 зуба) с покрытием TiAIN диаметром 3, 4, 5, 6, 8 и 10 мм в пластиковой цилиндрической упаковке.

А – серия, В – количество, С – диаметр.

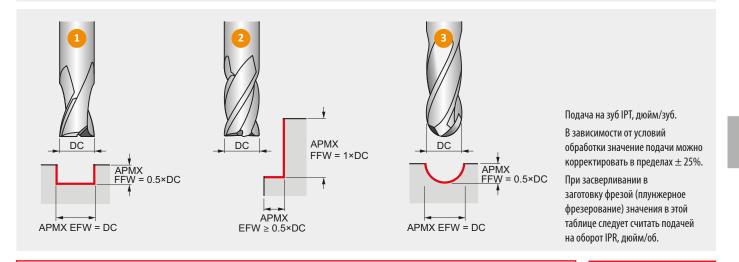
Обозначение	А	В	C
S991SET922	S922	6	3.00 мм, 4.00 мм, 5.00 мм, 6.00 мм, 8.00 мм, 10.00 мм
S991SET933	S933	6	3.00 мм, 4.00 мм, 5.00 мм, 6.00 мм, 8.00 мм, 10.00 мм
S991SET944	S944	6	3.00 мм, 4.00 мм, 5.00 мм, 6.00 мм, 8.00 мм, 10.00 мм

DORMER PRAMET

CMEMNTE 3A OBHOBMEHNЯMN



МОНОЛИТНЫЕ ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА – ПОДАЧА НА ЗУБ


Как использовать таблицу определения подачи на зуб (f,):

- 1. Определение индекса подачи (например, 199К, где "К" это индекс подачи)
- 2. Определение ближайшего диаметра фрезы по верхней строке таблицы.
- 3. Выбор строки с индексом подачи в первой колонке таблицы.
- 4. В ячейке на пересечении выбранных параметров будет значение подачи на зуб фрезы (f_2) .

ТОЛЬКО ДЛЯ МОНОЛИТНЫХ ФРЕЗ ИЗ ТВЕРДОГО СПЛАВА

									(ø DC, mn	١							
		1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00	25.00
	A	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009	0.010	0.011	0.014	0.015	0.017	0.019	0.021	0.025	0.028
	В	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009	0.010	0.011	0.014	0.015	0.017	0.019	0.021	0.025	0.028
	C	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009	0.010	0.011	0.014	0.015	0.017	0.019	0.021	0.025	0.028
	D	0.002	0.003	0.004	0.005	0.007	0.008	0.009	0.010	0.011	0.012	0.014	0.015	0.017	0.019	0.021	0.025	0.028
	E	0.002	0.003	0.004	0.008	0.009	0.012	0.013	0.014	0.015	0.016	0.019	0.021	0.024	0.026	0.028	0.030	0.034
Подача на зуб, мм/зуб	F	0.002	0.003	0.006	0.010	0.013	0.016	0.017	0.019	0.021	0.022	0.026	0.029	0.032	0.035	0.039	0.042	0.047
5, MA	G	0.002	0.005	0.008	0.014	0.018	0.022	0.024	0.026	0.028	0.031	0.035	0.040	0.044	0.048	0.053	0.057	0.064
a 3y(ı	0.003	0.006	0.011	0.019	0.024	0.030	0.032	0.036	0.039	0.042	0.049	0.054	0.061	0.066	0.073	0.079	0.088
Чан	J	0.004	0.009	0.014	0.026	0.033	0.041	0.044	0.048	0.053	0.057	0.066	0.074	0.083	0.090	0.099	0.107	0.120
Под	K	0.006	0.012	0.019	0.035	0.044	0.054	0.059	0.064	0.070	0.076	0.088	0.098	0.110	0.120	0.132	0.142	0.160
_	N	0.008	0.016	0.025	0.047	0.058	0.072	0.078	0.086	0.094	0.101	0.117	0.131	0.146	0.160	0.175	0.189	0.212
	0	0.010	0.021	0.034	0.062	0.078	0.096	0.104	0.114	0.124	0.135	0.156	0.174	0.195	0.213	0.233	0.252	0.283
	P	0.014	0.028	0.045	0.083	0.104	0.128	0.138	0.152	0.166	0.180	0.207	0.231	0.259	0.283	0.311	0.335	0.376
	R	0.018	0.037	0.060	0.110	0.138	0.170	0.184	0.202	0.221	0.239	0.276	0.308	0.345	0.377	0.414	0.446	0.501
	S	0.024	0.049	0.080	0.147	0.183	0.226	0.245	0.269	0.294	0.318	0.367	0.410	0.459	0.502	0.550	0.593	0.667

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА – ПОДАЧА НА ЗУБ

Как использовать таблицу определения подачи на зуб IPT:

- 1. Определение индекса подачи (например, 653К, где "К" это индекс подачи)
- 2. Определение ближайшего диаметра фрезы по верхней строке таблицы.
- 3. Выбор строки с индексом подачи в первой колонке таблицы.
- 4. В ячейке на пересечении выбранных параметров будет значение подачи на зуб фрезы IPT.

ТОЛЬКО ДЛЯ МОНОЛИТНЫХ ФРЕЗ ИЗ ТВЕРДОГО СПЛАВА

			ø DC, дюйм														
		1/16	3/32	1/8	5/32	3/16	7/32	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1
		.0625	.0938	.1250	.1563	.1875	.2188	.2500	.3125	.3750	.4375	.5000	.5625	.6250	.7500	.8750	1.0000
	A	.0001	.0001	.0002	.0002	.0002	.0002	.0003	.0003	.0004	.0005	.0005	.0006	.0007	.0008	.0010	.0011
	В	.0001	.0001	.0002	.0002	.0002	.0002	.0003	.0003	.0004	.0005	.0005	.0006	.0007	.0008	.0010	.0011
	C	.0001	.0001	.0002	.0002	.0002	.0002	.0003	.0003	.0004	.0005	.0005	.0006	.0007	.0008	.0010	.0011
	D	.0001	.0001	.0002	.0002	.0002	.0003	.0004	.0004	.0004	.0005	.0006	.0006	.0007	.0008	.0010	.0011
و	E	.0001	.0001	.0002	.0003	.0004	.0004	.0005	.0006	.0006	.0007	.0007	.0009	.0009	.0011	.0012	.0013
Подача на зуб, дюйм/зуб	F	.0001	.0002	.0002	.0004	.0005	.0006	.0006	.0007	.0009	.0009	.0011	.0012	.0013	.0015	.0017	.0019
дюĭ	G	.0002	.0002	.0004	.0006	.0007	.0007	.0009	.0010	.0012	.0013	.0015	.0016	.0017	.0020	.0023	.0025
3y6,	I	.0002	.0003	.0005	.0007	.0009	.0011	.0012	.0014	.0016	.0018	.0020	.0022	.0024	.0028	.0031	.0035
а на	J	.0003	.0004	.0007	.0010	.0012	.0014	.0017	.0019	.0022	.0024	.0027	.0030	.0032	.0037	.0043	.0047
одан	K	.0004	.0006	.0009	.0014	.0016	.0019	.0022	.0025	.0029	.0032	.0036	.0040	.0043	.0050	.0056	.0063
Ĕ	N	.0005	.0007	.0011	.0019	.0022	.0025	.0029	.0034	.0038	.0043	.0048	.0053	.0057	.0066	.0075	.0083
	0	.0006	.0010	.0015	.0024	.0029	.0034	.0039	.0045	.0051	.0057	.0063	.0070	.0076	.0088	.0100	.0111
	P	.0008	.0014	.0020	.0033	.0038	.0045	.0052	.0060	.0068	.0076	.0084	.0094	.0100	.0117	.0133	.0148
	R	.0011	.0018	.0027	.0043	.0051	.0060	.0069	.0080	.0091	.0101	.0112	.0125	.0134	.0156	.0177	.0197
	S	.0015	.0024	.0036	.0058	.0067	.0080	.0091	.0106	.0120	.0135	.0149	.0166	.0178	.0207	.0236	.0263

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА – ПОПРАВОЧНЫЕ КОЭФФИЦИЕНТЫ

1 Фрезерование паза

Поправочные коэффициенты для скорости резания V и подачи на зуб f_z в зависимости от глубины резания.

APMX FFW / DC	25 %	50 %	100 %	150 %
X.V	1.25	1.00	0.75	0.50
x.f ⇒	1.25	1.00	0.75	0.50

2 Фрезерование уступа

Поправочные коэффициенты для скорости резания V и подачи на зуб f_z в зависимости от ширины фрезерования (в % от диаметра фрезы).

APMX EFW / DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	≥ 50 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.00
x.f ⇒	2.29	1.67	1.40	1.25	1.15	1.09	1.02	1.00

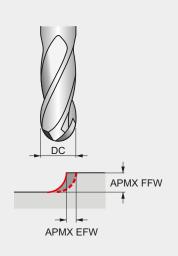
Рекомендуется избегать обработки с шириной фрезерования 50% от диаметра фрезы.

За Копировальное фрезерование (сферическими фрезами)

Поправочные коэффициенты для скорости резания V в зависимости от глубины резания.

APMX FFW / DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %
(X.V	2.29	1.67	1.40	1.25	1.15	1.09	1.02	1.00

3b


Значения шага $\mathbf{f}_{\mathbf{e}}$ между проходами для достижения теоретической шероховатости .

DC	μm	2	4	8	16	32	63	125	250
2		0.13	0.18	0.25	0.36	0.50	0.70	0.97	1.32
3		0.15	0.22	0.31	0.44	0.62	0.86	1.20	1.66
4		0.18	0.25	0.36	0.50	0.71	1.00	1.39	1.94
5		0.20	0.28	0.40	0.56	0.80	1.12	1.56	2.18
6		0.22	0.31	0.44	0.62	0.87	1.22	1.71	2.40
8		0.25	0.36	0.51	0.71	1.01	1.41	1.98	2.78
10		0.28	0.40	0.57	0.80	1.13	1.58	2.22	3.12
12		0.31	0.44	0.62	0.88	1.24	1.73	2.44	3.43
14	// //	0.33	0.47	0.67	0.95	1.34	1.87	2.63	3.71
16		0.36	0.51	0.72	1.01	1.43	2.00	2.82	3.97
18		0.38	0.54	0.76	1.07	1.52	2.13	2.99	4.21
20		0.40	0.57	0.80	1.13	1.60	2.24	3.15	4.44
22		0.42	0.59	0.84	1.19	1.68	2.35	3.31	4.66
25	f _e	0.45	0.63	0.89	1.26	1.79	2.51	3.53	4.97
28	-	0.47	0.67	0.95	1.34	1.89	2.65	3.73	5.27

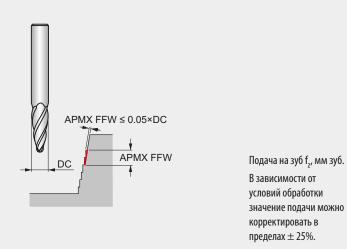
Указанные значения шага измеряются только в мм.

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА – ПОПРАВОЧНЫЕ КОЭФФИЦИЕНТЫ

Как использовать таблицу определения поправочного коэффициента для подачи на зуб (\mathbf{f}_z) при копировальном фрезеровании:

- 1. Определение ближайшего значения к выбранной ширине фрезерования в % от диаметра фрезы (APMX EFW) по верхней строке таблицы.
- Определение ближайшего значения к выбранной глубине резания в % от диаметра фрезы (APMX FFW) по левому столбцу таблицы.
- 3. В ячейке на пересечении выбранных параметров будет значение поправочного коэффициента для подачи на зуб фрезы (f,).

Пример для копировального фрезерования:


- Применение сферической фрезы Ø8 мм с глубиной резания 0.8 мм (АРМХ FFW) с целью получения поверхности с шероховатостью 32 мкм.
- 2. Поправочный коэффициент для скорости резания при глубине резания 10% от диаметра фрезы = 1.67 (таблица 3a).
- 3. Шаг между проходами для достижения теоретической шероховатости 32 мкм = 1.01 мм (таблица 3b).
- 4. Поправочный коэффициент для подачи на зуб при глубине резания 10% и ширине фрезерования 1.01/8 = 12.6% определяется по таблице 3c и в данном случае будет = 2.33.

Поправочные коэффициенты для подачи на зуб f, в зависимости от ширины фрезерования АРМХ EFW и глубины резания АРМХ FFW (в % от диаметра фрезы).

APMX FFW	APMX EFW	5 %	10 %	15 %	20 %	25 %	30 %	35 %	40 %	50 %
5 %		5.26	3.82	3.21	2.87	2.65	2.50	2.40	2.34	2.29
10 %		3.82	2.78	2.33	2.08	1.92	1.82	1.75	1.70	1.67
15 %		3.21	2.33	1.96	1.75	1.62	1.53	1.47	1.43	1.40
20 %		2.87	2.08	1.75	1.56	1.44	1.36	1.31	1.28	1.25
25 %	x.f	2.65	1.92	1.62	1.44	1.33	1.26	1.21	1.18	1.15
30 %	\Longrightarrow	2.50	1.82	1.53	1.36	1.26	1.19	1.14	1.11	1.09
35 %		2.40	1.75	1.47	1.31	1.21	1.14	1.10	1.07	1.05
40 %		2.34	1.70	1.43	1.28	1.18	1.11	1.07	1.04	1.02
45 %		2.31	1.68	1.41	1.26	1.16	1.10	1.05	1.03	1.01
50 %		2.29	1.67	1.40	1.25	1.15	1.09	1.05	1.02	1.00

Для повышения качества обрабатываемой поверхности инструмент следует наклонять по отношению к поверхности заготовки под углом $10\dots15^\circ$.

ПАРАБОЛИЧЕСКИЕ ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА – ПОДАЧА НА ЗУБ

Как использовать таблицу определения подачи на зуб (f_j) :

- 1. Определение индекса подачи (например, 121F, где "F" это индекс подачи)
- 2. Определение ближайшего диаметра фрезы по верхней строке таблицы.
- 3. Выбор строки с индексом подачи в первой колонке таблицы.
- 4. В ячейке на пересечении выбранных параметров будет значение подачи на зуб фрезы $(\mathbf{f}_{_{\mathbf{z}}})$.

ТОЛЬКО ДЛЯ ПАРАБОЛИЧЕСКИХ ФРЕЗ ИЗ ТВЕРДОГО СПЛАВА СЕРИИ S791

		ø DC, mm										
		6.00	8.00	10.00	12.00	16.00						
336	E	0.030	0.039	0.053	0.067	0.096						
Подача на	F	0.037	0.050	0.064	0.083	0.118						
Под	ı	0.062	0.084	0.111	0.141	0.203						

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ – МАТЕРИАЛ ИНСТРУМЕНТА

Материал инструмента		
Быстрорежущая сталь	HSS	Среднелегированная быстрорежущая сталь имеет хорошую обрабатываемость, а также важное сочетание прочности и износостойкости, что делает такой материал привлекательным для изготовления большого ассортимента режущего инструмента, например, сверл, метчиков и фрез.
Быстрорежущая сталь с кобальтом	HSS-E	Быстрорежущая сталь с кобальтом HSS-E имеет повышенную красностойкость. Структура материала позволяет получить хорошее сочетание прочности и износостойкости. Хорошая обрабатываемость материала делает его пригодным для изготовления сверл, метчиков и монолитных фрез.
Порошковая быстрорежущая сталь с кобальтом	HSS-E PM	Быстрорежущая сталь с кобальтом HSS-E-PM изготавливается методом порошковой металлургии. Благодаря такому методу получения быстрорежущая сталь имеет однородную структуру, высокую прочность и хорошую обрабатываемость шлифованием. Изготовленный из такого материала режущий инструмент имеет значительное преимущество в производительности и надежности.

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ – ПОКРЫТИЕ

Обработка поверхности

Полирование (без покрытия)

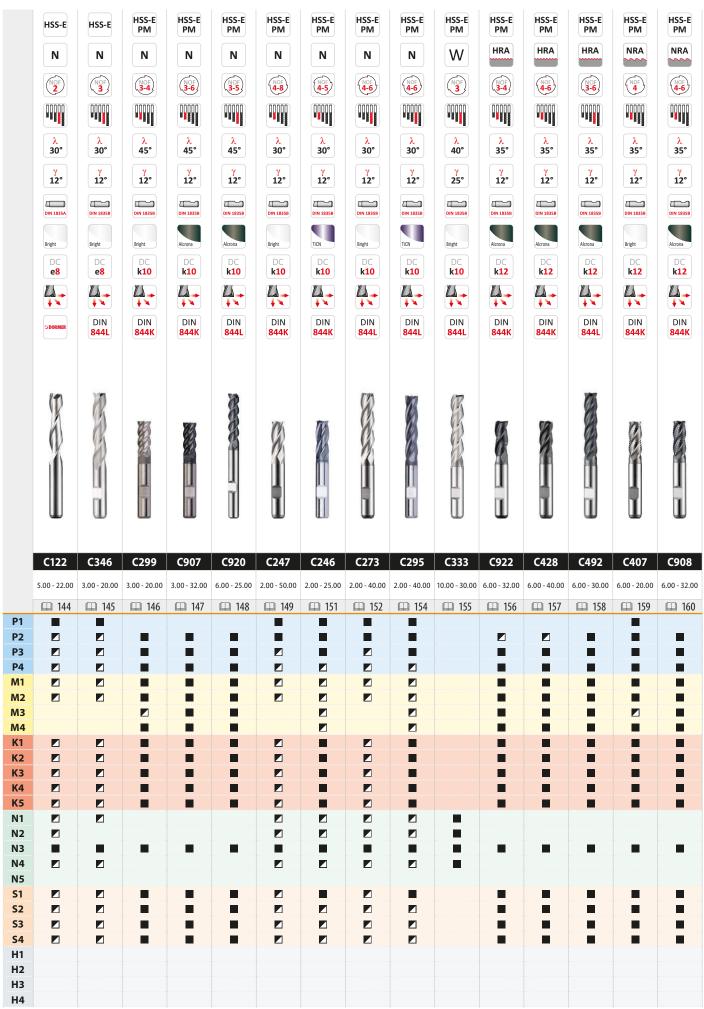
Непокрытые полированные поверхности снижают вероятность налипания стружки и позволяют сохранить остроту режущих кромок для обработки вязких материалов заготовок.

Обработка быстрорежущей стали паром

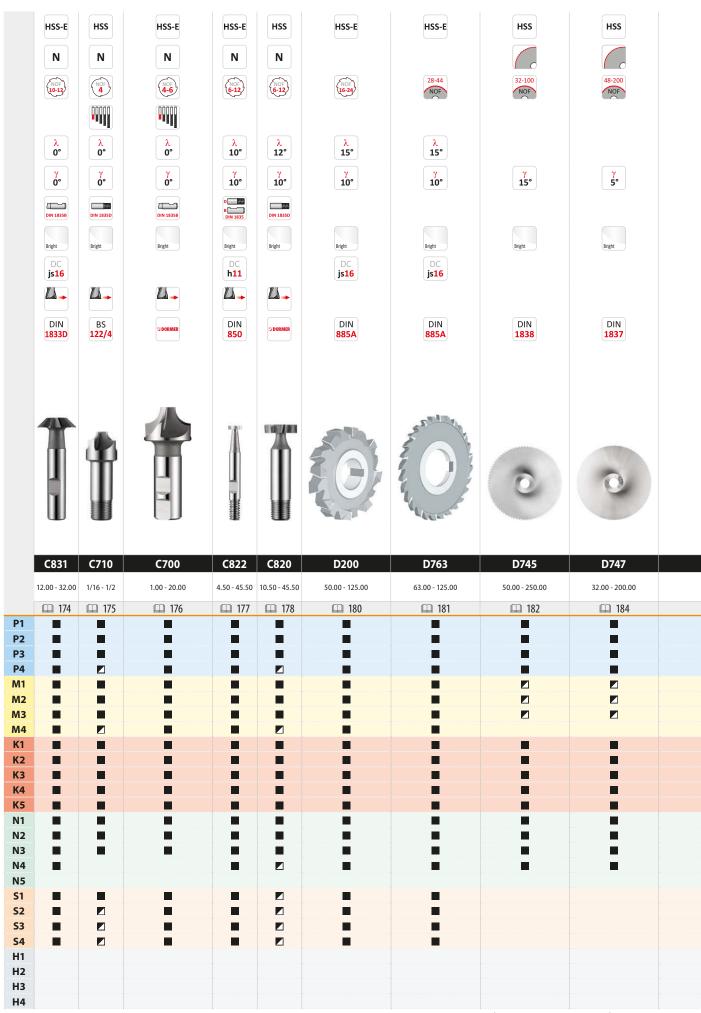
Обработка быстрорежущей стали паром создает тонкую оксидную пленку на поверхности инструмента, которая снижает вероятность налипания стружки и лучше смачивается СОЖ. Такой вид обработки поверхности используется преимущественно на сверлах и метчиках.

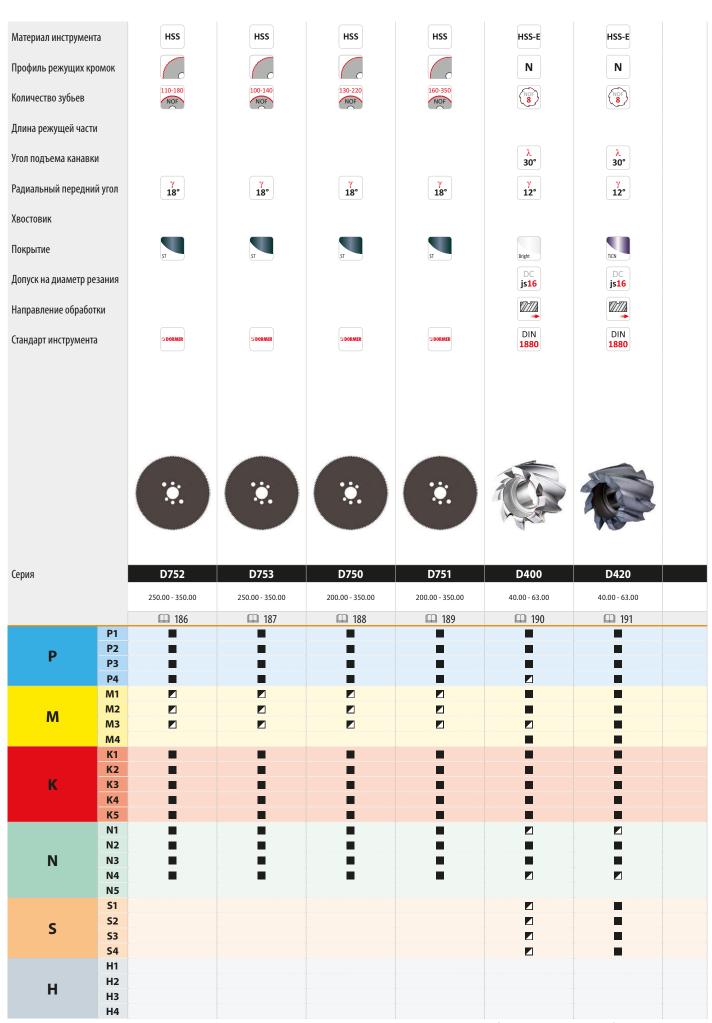
Покрытие

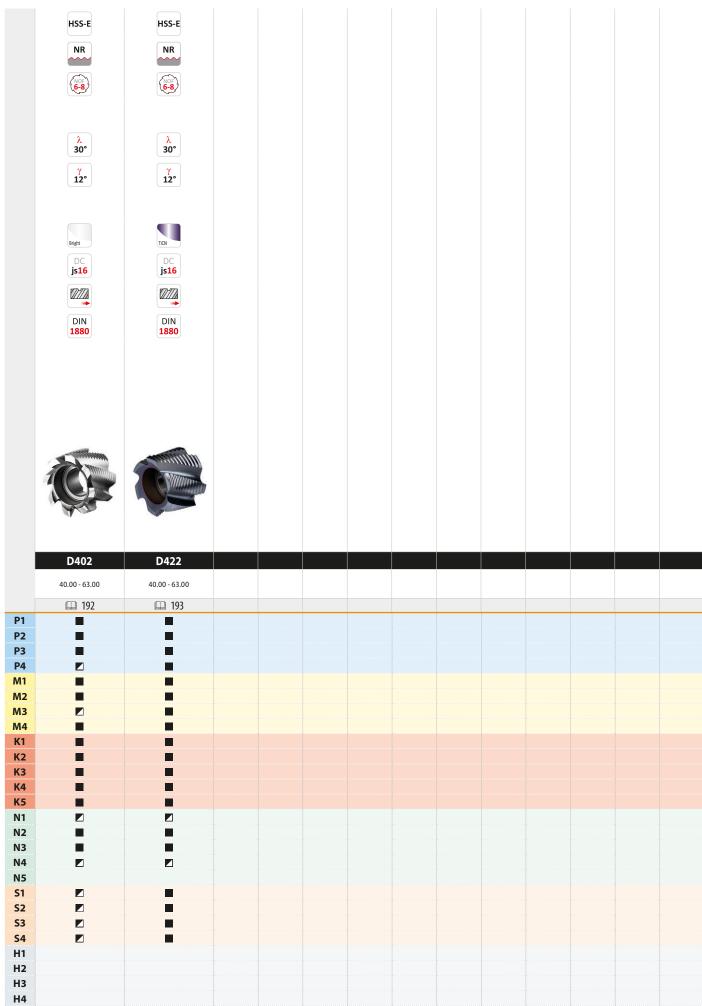
Покрытие Alcrona


Покрытие Alcrona (AlCrN) обычно используется для фрез и имеет два уникальных свойства: высокая красностойкость и сопротивление окислению. При использовании режущего инструмента в условиях высоких термических и механических нагрузок такое покрытие позволяет получить исключительную износостойкость. Для разного инструмента и применения доступно несколько вариантов такого покрытия.

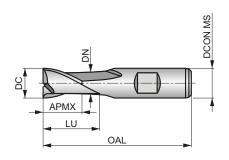
Покрытие TiCN




Покрытие TiCN наносится с помощью технологии PVD, является более твердым покрытием в сравнении с TiN и имеет более низкий коэффициент трения. Высокая твердость и прочность покрытия позволяют значительно повысить износостойкость режущего инструмента и производительность обработки.


Материал инструмент	ra	HSS-E PM	HSS-E PM	HSS-E PM	HSS-E PM	HSS-E	HSS-E PM	HSS-E PM	HSS-E PM	HSS-E PM	HSS-E PM	HSS-E	HSS-E PM	HSS-E
Профиль режущих кр	омок	N	N	N	N	N	N	N	N	N	N	W	W	N
Количество зубьев		NOF 2	NOF 2	NOF 2	NOF 2	NOF 2	NOF 3	NOF 3	NOF 3	NOF 3	NOF 3	NOF 2	NOF 3	NOF 2
Длина режущей части	1													
Угол подъема канавкі		λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	λ
		30° γ 12°	30°	30°	30°	30°	30°	30° γ 12°	40° γ	30°	30°	40° γ	40° γ	30°
Радиальный передни	и угол	12°	12°	12°	12°	12°	12°	12°	15°	12°	12°	20°	25°	12°
Хвостовик		DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835A
Покрытие		Bright	TICN	Bright	TICN	Bright	Bright	Alcrona	Alcrona	Bright	Alcrona	Bright	Bright	Bright
Допуск на диаметр ре	зания	DC e8	DC e8	DC e8	DC e8	e8	DC e8	DC e8	DC e8	e8	DC e8	DC e8	DC k10	js14
Направление обработ	КИ													
Стандарт инструмента	ì	DIN 327D	DIN 327D	DIN 844K	DIN 844K	DORMER	DIN 327D	DIN 327D	DIN 327D	DIN 844K	DIN 844K	DIN 844K	DIN 844K	DORMER
						Wn.								
				/P	m	<i>y</i>				(h)	yan.	10	(75)	
		M	V	W.			O	R	25	(1)	Ø	K	3	
		4					M		f		M	Ĭ	ſ	
		Î		1	II	Î			Ĩ	Î	n		I	
		•										_		w
Серия		C110	C126	C123	C139	C135	C306	C353	C367	C305	C352	C159	C336	C167
Серия		C110		C123 1/16 - 30.00				C353			C352	C159	C336	
Серия	P1	1.00 - 40.00	C126 1.00 - 30.00	1/16 - 30.00	2.00 - 25.00	2.00 - 20.00	3.00 - 30.00	3.00 - 30.00	2.00 - 20.00	2.00 - 32.00	3.00 - 20.00	C159 2.00 - 20.00	10.00 - 30.00	
Серия	P2	1.00 - 40.00 126	C126 1.00 - 30.00 128	1/16 - 30.00	2.00 - 25.00	2.00 - 20.00	3.00 - 30.00	3.00 - 30.00	2.00 - 20.00	2.00 - 32.00	3.00 - 20.00	C159 2.00 - 20.00 141	10.00 - 30.00	6.00 - 16.00
	P2 P3 P4	1.00 - 40.00 126	C126 1.00 - 30.00 128	1/16 - 30.00	2.00 - 25.00	2.00 - 20.00	3.00 - 30.00	3.00 - 30.00	2.00 - 20.00	2.00 - 32.00	3.00 - 20.00	C159 2.00 - 20.00 141	10.00 - 30.00	6.00 - 16.00 143
P	P2 P3 P4 M1 M2	1.00 - 40.00 126	C126 1.00 - 30.00 128	1/16 - 30.00	2.00 - 25.00	2.00 - 20.00	3.00 - 30.00	3.00 - 30.00	2.00 - 20.00	2.00 - 32.00	3.00 - 20.00	C159 2.00 - 20.00 141	10.00 - 30.00	6.00 - 16.00 143
	P2 P3 P4 M1	1.00 - 40.00 126	C126 1.00 - 30.00 128	1/16 - 30.00 130	2.00 - 25.00	2.00 - 20.00	3.00 - 30.00	3.00 - 30.00	2.00 - 20.00	2.00 - 32.00	3.00 - 20.00	C159 2.00 - 20.00 141	10.00 - 30.00 142	6.00 - 16.00 143
P	P2 P3 P4 M1 M2 M3 M4	1.00 - 40.00	C126 1.00 - 30.00 128	1/16 - 30.00	2.00 - 25.00	2.00 - 20.00	3.00 - 30.00	3.00 - 30.00	2.00 - 20.00	2.00 - 32.00	3.00 - 20.00	C159 2.00 - 20.00 141	10.00 - 30.00	6.00 - 16.00 143
P	P2 P3 P4 M1 M2 M3 M4 K1 K2	1.00 - 40.00	C126 1.00-30.00 128	1/16 - 30.00	2.00 - 25.00	2.00 - 20.00	3.00 - 30.00	3.00 - 30.00	2.00 - 20.00	2.00 - 32.00	3.00 - 20.00	C159 2.00 - 20.00 141	10.00 - 30.00	6.00 - 16.00
P M	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4	1.00 - 40.00	C126 1.00 - 30.00 128	1/16 - 30.00	2.00 - 25.00	2.00 - 20.00	3.00 - 30.00	3.00 - 30.00	2.00 - 20.00	2.00 - 32.00	3.00 - 20.00	C159 2.00 - 20.00 141	10.00 - 30.00	6.00 - 16.00
P M	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3	1.00 - 40.00	C126 1.00 - 30.00 128	1/16 - 30.00	2.00 - 25.00	2.00 - 20.00	3.00 - 30.00	3.00 - 30.00	2.00 - 20.00	2.00 - 32.00	3.00 - 20.00	C159 2.00 - 20.00 141	10.00 - 30.00	6.00 - 16.00
P M	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2	1.00 - 40.00	C126 1.00 - 30.00 128	1/16-30.00	2.00 - 25.00	2.00 - 20.00	3.00 - 30.00	3.00 - 30.00	2.00 - 20.00	2.00 - 32.00	3.00 - 20.00	C159 2.00 - 20.00 141	10.00 - 30.00	6.00 - 16.00 143
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4	1.00 - 40.00	C126 1.00 - 30.00 128	1/16-30.00	2.00 - 25.00	2.00-20.00	3.00 - 30.00	3.00 - 30.00	2.00 - 20.00	2.00 - 32.00	3.00 - 20.00	C159 2.00 - 20.00 141	10.00 - 30.00	6.00 - 16.00 143
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4 N5 S1	1.00 - 40.00	C126 1.00 - 30.00 128	1/16 - 30.00	2.00 - 25.00	2.00 - 20.00	3.00 - 30.00	3.00 - 30.00	2.00 - 20.00	2.00 - 32.00	3.00 - 20.00	C159 2.00 - 20.00 141	10.00 - 30.00	6.00 - 16.00
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4 N5 S1	1.00 - 40.00 126	C126 1.00 - 30.00 128	1/16 - 30.00	2.00 - 25.00	2.00 - 20.00	3.00 - 30.00	3.00 - 30.00	2.00 - 20.00	2.00 - 32.00	3.00 - 20.00	C159 2.00 - 20.00 141	10.00 - 30.00	6.00 - 16.00 143 143 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4 N5 S1 S2 S3 S4 H1	1.00 - 40.00	C126 1.00 - 30.00 128	1/16 - 30.00	2.00 - 25.00	2.00 - 20.00	3.00 - 30.00	3.00 - 30.00	2.00 - 20.00	2.00 - 32.00	3.00 - 20.00	C159 2.00 - 20.00 141	10.00 - 30.00	6.00 - 16.00 143
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4 N5 S1 S2 S3 S4	1.00 - 40.00	C126 1.00 - 30.00 128	1/16 - 30.00	2.00 - 25.00	2.00-20.00	3.00 - 30.00	3.00 - 30.00	2.00 - 20.00	2.00 - 32.00	3.00 - 20.00	C159 2.00 - 20.00 141	10.00 - 30.00	6.00 - 16.00 143

		HSS-E												
Материал инструмент	га	PM	HSS-E	HSS-E	HSS-E	HSS-E	HSS-E	HSS-E	HSS	HSS-E	HSS-E	HSS	HSS	HSS-E
Профиль режущих кр	омок	NRA	NF	NF	NF	N	N	N	N	N	NF	N	N	N
Количество зубьев		NOF 4-6	NOF 4	NOF 4	NOF 4-6	NOF 2	NOF 2	NOF 6-8	NOF 6-8	NOF 8-12	NOF 6-8	NOF 6-8	NOF 6-8	NOF 10-12
Длина режущей части	1													
Угол подъема канавк	И	λ 35°	λ 30°	<mark>λ</mark> 30°	<mark>λ</mark> 30°	λ 30°	λ 30°	λ 15°	λ 12°	λ 15°	λ 12°	λ 0°	<mark>λ</mark> 0°	λ 0°
Радиальный передни	й угол	γ 12°	γ 12°	γ 12°	γ 12°	γ 12°	γ 12°	γ 10°	γ 10°	γ 15°	γ 10°	γ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	γ 0°	γ 0°
Хвостовик		DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	D B DIN 1835	DIN 1835D	DIN 1835B	DIN 1835B	DIN 1835D	DIN 1835D	DIN 1835B
Покрытие		Alcrona	Bright	TiCN	Bright	Bright	Bright	Bright	Bright	Bright	Bright	Bright	Bright	Bright
Допуск на диаметр ре	езания	DC k12	DC k12	DC k12	DC k12	DC e8	DC e8	DC d11	DC d11	DC js16	DC d11			DC js16
Направление обработ	ГКИ		4	4					4		4	4	4	Z
Стандарт инструмента	a	DIN 844L	DIN 844K	DIN 844K	DIN 844L	DIN 327D	DIN 844K	DIN 851	DORMER	DORMER	DIN 851	DORMER	DORMER	DIN 1833C
		0442	<u> </u>	0448	0442	3278	<u> </u>	031			031			10330
							11 30200							
				1		m	P					I		
				if		ĥ		\mathbf{I}	m		\square	Π	П	
		7		П				1		1	Ĩ			1
		ш		ш	LII.	ш	w.			w.	- UU			
Серия		C948	C400	C413	C403	C500	C505	C800	C810	C825	C801	C837	C835	C830
Серия		C948 6.00 - 32.00	C400 6.00 - 20.00	C413	C403	C500 2.00 - 25.00	C505 3.00 - 30.00	C800	C810	C825	C801	C837	C835	C830
Серия	D1		6.00 - 20.00	6.00 - 20.00	10.00 - 50.00	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	16.00 - 32.00	13.00 - 38.00	1/2 - 1.1/2	12.00 - 32.00
	P1 P2	6.00 - 32.00	6.00 - 20.00	6.00 - 20.00	10.00 - 50.00	2.00 - 25.00	3.00 - 30.00 166	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00 169	16.00 - 32.00	13.00 - 38.00	1/2 - 1.1/2	12.00 - 32.00
Серия		6.00 - 32.00	6.00 - 20.00 162	6.00 - 20.00	10.00 - 50.00	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00 168	40.00 - 63.00	16.00 - 32.00 170	13.00 - 38.00	1/2 - 1.1/2	12.00 - 32.00
	P2 P3 P4 M1	6.00 - 32.00	6.00 - 20.00 162	6.00 - 20.00 163	10.00 - 50.00	2.00 - 25.00 165	3.00 - 30.00 166	11.00 - 50.00	12.50 - 40.00 168	40.00 - 63.00	16.00 - 32.00 170	13.00 - 38.00	1/2 - 1.1/2	12.00 - 32.00
	P2 P3 P4	6.00 - 32.00	6.00 - 20.00 162	6.00 - 20.00	10.00 - 50.00	2.00 - 25.00 165	3.00 - 30.00 166	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	16.00 - 32.00	13.00 - 38.00	1/2 - 1.1/2	12.00 - 32.00
P	P2 P3 P4 M1 M2 M3	6.00 - 32.00	6.00 - 20.00	6.00 - 20.00	10.00 - 50.00	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	16.00 - 32.00	13.00 - 38.00	1/2-1.1/2	12.00 - 32.00
P M	P2 P3 P4 M1 M2 M3 M4 K1	6.00 - 32.00	6.00 - 20.00	6.00 - 20.00	10.00 - 50.00	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	16.00 - 32.00	13.00 - 38.00	1/2-1.1/2	12.00 - 32.00
P	P2 P3 P4 M1 M2 M3 M4	6.00 - 32.00	6.00 - 20.00	6.00 - 20.00	10.00 - 50.00	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	16.00 - 32.00	13.00 - 38.00	1/2-1.1/2	12.00 - 32.00
P M	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4	6.00 - 32.00	6.00 - 20.00	6.00 - 20.00	10.00 - 50.00	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	16.00 - 32.00	13.00 - 38.00	1/2 - 1.1/2	12.00 - 32.00
P M	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3	6.00 - 32.00	6.00 - 20.00	6.00 - 20.00	10.00 - 50.00	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	16.00 - 32.00	13.00 - 38.00	1/2-1.1/2	12.00 - 32.00
P M	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2	6.00 - 32.00	6.00 - 20.00	6.00 - 20.00	10.00 - 50.00	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	16.00 - 32.00	13.00 - 38.00	1/2 - 1.1/2	12.00 - 32.00
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1	6.00 - 32.00	6.00 - 20.00	6.00 - 20.00	10.00 - 50.00	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	16.00 - 32.00	13.00 - 38.00	1/2 - 1.1/2	12.00 - 32.00
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4 N5 S1	6.00 - 32.00	6.00 - 20.00	6.00 - 20.00	10.00 - 50.00	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	16.00 - 32.00	13.00 - 38.00	1/2-1.1/2	12.00 - 32.00
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4	6.00 - 32.00	6.00 - 20.00	6.00 - 20.00	10.00 - 50.00	2.00-25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	16.00 - 32.00	13.00 - 38.00	1/2-1.1/2	12.00 - 32.00
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4 N5 S1 S2 S3 S4	6.00 - 32.00	6.00 - 20.00	6.00 - 20.00	10.00 - 50.00	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	16.00 - 32.00	13.00 - 38.00	1/2-1.1/2	12.00 - 32.00
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4 N5 S1 S2 S3	6.00 - 32.00	6.00 - 20.00	6.00 - 20.00	10.00 - 50.00	2.00-25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	16.00 - 32.00	13.00 - 38.00	1/2-1.1/2	12.00 - 32.00
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4 N5 S1 S2 S3 S4 H1	6.00 - 32.00	6.00 - 20.00	6.00 - 20.00	10.00 - 50.00	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	16.00 - 32.00	13.00 - 38.00	1/2-1.1/2	12.00 - 32.00



Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования преимущественно мягких сталей, цветных и титановых сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

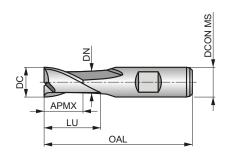
Применени	е инструмен	та, начальны	е значения сн	корости реза	ния (м/мин) и	и индекс пода	ачи. Подача и	и поправочнь	іе коэффициє	енты определ	яются по таб	лицам, начин	ная с стр. 194.
P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 53 E	■ 59 E	■61 E	■ 45 E	∠ 40 E	Z 37 E	Z 30 D	Z 22 D	∠ 41 E	Z 35 E	Z 37 E	Z 30 D	Z 35 E	Z 26 E
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
≥ 19 E	∠ 62 E	 ■ 50 E	∠ 40 D	≥ 54 E	∠ 42 E	■ 34 D	 ■ 50 D	■ 38 D	Z 28 D	Z 24 C	Z 20 C	 57 D	∠ 43 D
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1
Z 33 D	≥ 95 G	Z 71 F	∠ 48 F	Z 48 E	■ 43 E	⊿ 31 E	■ 50 E	■ 29 E	■15 E	 ■ 50 E	■ 35 D	Z 25 D	Z 20 C
S3.1	S4.1												

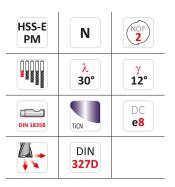
DCON MS с допуском h6.

∠ 12 C

■ 15 C

	DC	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(дюйм)	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C1101.0	_	1.00	6.00	2.50	47.0	2	_	_
C1101.5	_	1.50	6.00	3.00	47.0	2	_	_
C1101/16	1/16	1.59	6.00	3.00	47.0	2	_	_
C1101.8	_	1.80	6.00	4.00	48.0	2	_	_
C1102.0	-	2.00	6.00	4.00	48.0	2	-	_
C1103/32	3/32	2.38	6.00	5.00	49.0	2	_	_
C1102.5	_	2.50	6.00	5.00	49.0	2	_	_
C1102.8	-	2.80	6.00	5.00	49.0	2	_	_
C1103.0	-	3.00	6.00	5.00	49.0	2	-	_
C1101/8	1/8	3.18	6.00	6.00	50.0	2	_	_
C1103.5	-	3.50	6.00	6.00	50.0	2	_	_
C1103.8	-	3.80	6.00	7.00	51.0	2	_	_
C1104.0	_	4.00	6.00	7.00	51.0	2	_	_
C1104.5	_	4.50	6.00	7.00	51.0	2	_	_
C1103/16	3/16	4.76	6.00	8.00	52.0	2	_	_
C1104.8 ²⁾	_	4.80	6.00	8.00	52.0	2	_	_
C1105.0	_	5.00	6.00	8.00	52.0	2	_	_
C1105.5	-	5.50	6.00	8.00	52.0	2	_	_
C1105.75 ²⁾	-	5.75	6.00	8.00	52.0	2	_	_
C1106.0	-	6.00	6.00	8.00	52.0	2	_	_
C1101/4	1/4	6.35	10.00	10.00	60.0	2	_	_
C1106.5	_	6.50	10.00	10.00	60.0	2	-	-
C1107.0	_	7.00	10.00	10.00	60.0	2	_	_
C1107.5	-	7.50	10.00	10.00	60.0	2	_	_
C1107.75 ²⁾	-	7.75	10.00	11.00	61.0	2	-	-


	DC	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(дюйм)	(мм)	(MM)	(MM)	(MM)		(MM)	(MM)
1105/16	5/16	7.94	10.00	11.00	61.0	2	_	-
1108.0	_	8.00	10.00	11.00	61.0	2	_	_
1108.5	_	8.50	10.00	11.00	61.0	2	_	-
1109.0	_	9.00	10.00	11.00	61.0	2	_	_
1109.5	_	9.50	10.00	11.00	61.0	2	_	_
1103/8	3/8	9.52	10.00	13.00	63.0	2	22.50	9.50
11010.0	_	10.00	10.00	13.00	63.0	2	22.50	9.50
11013/32	13/32	10.32	12.00	13.00	70.0	2	_	_
11010.5	_	10.50	12.00	13.00	70.0	2	_	_
11011.0	_	11.00	12.00	13.00	70.0	2	_	_
1107/16	7/16	11.11	12.00	13.00	70.0	2	_	_
11011.5	_	11.50	12.00	13.00	70.0	2	_	_
11012.0	_	12.00	12.00	16.00	73.0	2	27.50	11.50
11012.5	_	12.50	12.00	16.00	73.0	2	27.50	11.50
1101/2	1/2	12.70	12.00	16.00	73.0	2	27.50	11.50
11013.0	_	13.00	12.00	16.00	73.0	2	27.50	11.50
11017/32	17/32	13.49	12.00	16.00	73.0	2	27.50	11.50
11014.0	_	14.00	12.00	16.00	73.0	2	27.50	11.50
1109/16	9/16	14.29	12.00	16.00	73.0	2	27.50	11.50
11015.0	_	15.00	12.00	16.00	73.0	2	27.50	11.50
1105/8	5/8	15.88	16.00	19.00	79.0	2	30.50	15.50
11016.0	_	16.00	16.00	19.00	79.0	2	30.50	15.50
11017.0	_	17.00	16.00	19.00	79.0	2	30.50	15.50
11011/16	11/16	17.46	16.00	19.00	79.0	2	30.50	15.50
11018.0	_	18.00	16.00	19.00	79.0	2	30.50	15.50
11019.0	_	19.00	16.00	19.00	79.0	2	30.50	15.50
1103/4	3/4	19.05	20.00	22.00	88.0	2	37.50	18.50
11020.0	_	20.00	20.00	22.00	88.0	2	37.50	19.50
11022.0	_	22.00	20.00	22.00	88.0	2	37.50	19.50
1107/8	7/8	22.22	20.00	22.00	88.0	2	37.50	19.50
11024.0	_	24.00	25.00	26.00	102.0	2	45.50	23.50
11025.0	_	25.00	25.00	26.00	102.0	2	45.50	24.50
1101	1"	25.40	25.00	26.00	102.0	2	45.50	24.50
11026.0	_	26.00	25.00	26.00	102.0	2	45.50	24.50
11028.0	_	28.00	25.00	26.00	102.0	2	45.50	24.50
11030.0	_	30.00	25.00	26.00	102.0	2	45.50	24.50
11032.0	_	32.00	32.00	32.00	112.0	2	51.50	31.50
(11035.0¹)	_	35.00	32.00	32.00	112.0	2	51.50	31.50
(11036.0 ¹⁾	_	36.00	32.00	32.00	112.0	2	51.50	31.50
	_	40.00	40.00	38.00	130.0	2	59.50	39.00

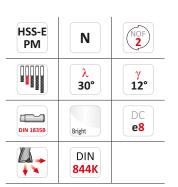

¹⁾ DC с допуском h10; только HSS-E. ²⁾ DC с допуском h10; паз не в допуске P9.

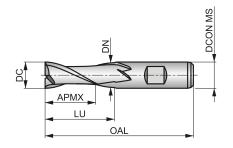
Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования большинства материалов. Покрытие TiCN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 ■ 126 E ■141 E ■146 E ■ 108 E ■ 95 E **■**84 D ■81 E ■ 65 D **≥**55 D ■48 D **∠**41 D **Z** 34 D **∠** 62 E **≥** 52 E M2.2 K2.3 M2.1 M3.3 M4.1 K1.1 K1.2 K1.3 K2.1 K2.2 **K3.1** K3.2 K3.3 **Z** 55 E **∠**45 D **Z**26 C **Z**25 C ■ 60 E ■ 44 E ■33 E ■111 E ■ 90 E ■72 D ■98 E ■ 75 E ■61 D ■91 D N3.1

N2.1 K4.2 K4.3 K4.4 K4.5 **N1.1 N1.2 N1.3 N2.2 N2.3** ■ 68 D ■ 50 D ■ 43 C **■**36 C ■ 103 D ■77 D ■60 D **■**177 G **≥**89 F **≥**89 E ■ 80 E ■ 57 E ■ 93 E **Z** 133 F N3.2 N3.3 N4.1 **S1.1 S1.2 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2 S1.3** ■ 55 E ■ 28 E **≥** 93 E ■ 45 D 40 D **∠** 15 C ■33 C **∠**14 C ■ 25 C **Z** 10 C ■ 20 C **8**8C


	DC	DCONIMC	ADMAY	041	NOF	111	DNI
	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(мм)
C1261.0	1.00	6.00	2.50	47.0	2	-	_
C1261.5	1.50	6.00	3.00	47.0	2	_	_
C1262.0	2.00	6.00	4.00	48.0	2	_	_
C1262.5	2.50	6.00	5.00	49.0	2	_	_
C1263.0	3.00	6.00	5.00	49.0	2	-	_
C1263.5	3.50	6.00	6.00	50.0	2	_	_
C1264.0	4.00	6.00	7.00	51.0	2	-	_
C1264.5	4.50	6.00	7.00	51.0	2	-	_
C1265.0	5.00	6.00	8.00	52.0	2	-	_
C1265.5	5.50	6.00	8.00	52.0	2	-	_
C1266.0	6.00	6.00	8.00	52.0	2	-	_
C1266.5	6.50	10.00	10.00	60.0	2	-	_
C1267.0	7.00	10.00	10.00	60.0	2	_	_
C1267.5	7.50	10.00	10.00	60.0	2	_	_
C1268.0	8.00	10.00	11.00	61.0	2	-	_
C1268.5	8.50	10.00	11.00	61.0	2	_	_
C1269.0	9.00	10.00	11.00	61.0	2	_	_
C1269.5	9.50	10.00	11.00	61.0	2	_	_
C12610.0	10.00	10.00	13.00	63.0	2	22.50	9.50
C12610.5	10.50	12.00	13.00	70.0	2	-	_
C12611.0	11.00	12.00	13.00	70.0	2	-	_
C12611.5	11.50	12.00	13.00	70.0	2	_	_
C12612.0	12.00	12.00	16.00	73.0	2	27.50	11.50
C12612.5	12.50	12.00	16.00	73.0	2	27.50	11.50
C12613.0	13.00	12.00	16.00	73.0	2	27.50	11.50


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(мм)	(MM)	(MM)		(мм)	(MM)
C12614.0	14.00	12.00	16.00	73.0	2	27.50	11.50
C12615.0	15.00	12.00	16.00	73.0	2	27.50	11.50
C12616.0	16.00	16.00	19.00	79.0	2	30.50	15.50
C12618.0	18.00	16.00	19.00	79.0	2	30.50	15.50
C12620.0	20.00	20.00	22.00	88.0	2	37.50	19.50
C12622.0	22.00	20.00	22.00	88.0	2	37.50	19.50
C12624.0	24.00	25.00	26.00	102.0	2	45.50	23.50
C12625.0	25.00	25.00	26.00	102.0	2	45.50	24.50
C12630.0	30.00	25.00	26.00	102.0	2	45.50	24.50

Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования преимущественно мягких сталей, цветных и титановых сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

D4 4	24.2	D4 0	DO 4	DO 0	DO 4	DO 0	D4.4	200 0	244 0	200 4	242.0	144.4	1/4 0
P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 53 D	■ 59 D	■61 D	■ 45 D	■40 D	■37 D	■30 C	■22 C	■ 34 D	Z 29 D	Z 31 D	Z 25 C	Z 30 D	Z 22 D
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 17 D	 55 D	∠ 45 D	Z 36 C	∠ 49 D	Z 37 D	Z 30 B	■ 45 C	Z 34 C	Z 25 C	Z 22 B	■ 18 B	■ 51 C	Z 39 C
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1
Z 30 C	≥ 95 F	Z 71 E	∠ 48 E	∠ 48 D	■ 43 D	■ 31 D	■ 50 D	■29 D	■15 D	Z 50 D	■ 30 C	Z 25 C	Z 20 B
S3.1	S4.1												

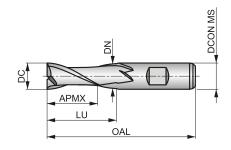
DCON MS с допуском h6.

∠ 12 B

■ 15 B

C1231/16 1/16 1.59 6.00 7.00 51.0 2 - -		DC	DC	DCON MS	APMX	OAL	NOF	LU	DN
C1231/16 ¹¹ 1/16 1.59 6.00 7.00 51.0 2 - - C1232.0 - 2.00 6.00 7.00 51.0 2 - - C1232.5 - 2.50 6.00 8.00 52.0 2 - - C1233.0 - 3.00 6.00 8.00 52.0 2 - - C1231/8¹¹ 1/8 3.18 6.00 10.00 54.0 2 - - C1234.5 - 3.50 6.00 11.00 55.0 2 - - C1235.2¹¹ 5/32 3.97 6.00 11.00 55.0 2 - - C1235.0 - 4.00 6.00 11.00 55.0 2 - - C1235.0 - 4.76 6.00 13.00 57.0 2 - - C1235.5 - 5.50 6.00 13.00 57.0		DC	DC	DCOM MI2	APMA	UAL	NOF	LU	DΝ
C1232.0 - 2.00 6.00 7.00 51.0 2 - - C1232.5 - 2.50 6.00 8.00 52.0 2 - - C1233.0 - 3.00 6.00 8.00 52.0 2 - - C1231/8¹¹ 1/8 3.18 6.00 10.00 54.0 2 - - C1235/3²¹ 5/32 3.97 6.00 11.00 55.0 2 - - C1234.0 - 4.00 6.00 11.00 55.0 2 - - C1234.5 - 4.50 6.00 11.00 55.0 2 - - C1235.0 3/16 4.76 6.00 13.00 57.0 2 - - C1235.0 - 5.50 6.00 13.00 57.0 2 - - C1236.0 - 6.00 6.00 13.00 57.0 <th< th=""><th></th><th>(дюйм)</th><th>(MM)</th><th>(MM)</th><th>(MM)</th><th>(MM)</th><th></th><th>(мм)</th><th>(MM)</th></th<>		(дюйм)	(MM)	(MM)	(MM)	(MM)		(мм)	(MM)
C1232.5 − 2.50 6.00 8.00 52.0 2 − − C1233.0 − 3.00 6.00 8.00 52.0 2 − − C1231/8¹¹¹ 1/8 3.18 6.00 10.00 54.0 2 − − C1235/32¹¹ 5/32 3.50 6.00 11.00 55.0 2 − − C1235/32¹¹ 5/32 3.97 6.00 11.00 55.0 2 − − C1234.5 − 4.00 6.00 11.00 55.0 2 − − C1234.5 − 4.50 6.00 11.00 55.0 2 − − C1234.5 − 4.50 6.00 13.00 57.0 2 − − C1235.5 − 5.00 6.00 13.00 57.0 2 − − C1235.6 − 6.00 6.00 13.00 57.0	C1231/16 1)	1/16	1.59	6.00	7.00	51.0	2	-	-
C1233.0 - 3.00 6.00 8.00 52.0 2 - - C1231/8¹¹ 1/8 3.18 6.00 10.00 54.0 2 - - C1233.5 - 3.50 6.00 11.00 55.0 2 - - C1235/32¹¹ 5/32 3.97 6.00 11.00 55.0 2 - - C1234.0 - 4.00 6.00 11.00 55.0 2 - - C1234.5 - 4.50 6.00 11.00 55.0 2 - - C1234.5 - 4.50 6.00 13.00 57.0 2 - - C1235.0 - 5.50 6.00 13.00 57.0 2 - - C1236.0 - 6.00 6.00 13.00 57.0 2 - - C1237.0 1 6.55 10.00 16.00 66.0 <t< th=""><th>C1232.0</th><th>_</th><th>2.00</th><th>6.00</th><th>7.00</th><th>51.0</th><th>2</th><th>_</th><th>_</th></t<>	C1232.0	_	2.00	6.00	7.00	51.0	2	_	_
C1231/8³¹¹ 1/8 3.18 6.00 10.00 54.0 2 - - C1233.5 - 3.50 6.00 10.00 54.0 2 - - C1235/32¹¹¹ 5/32 3.97 6.00 11.00 55.0 2 - - C1234.0 - 4.00 6.00 11.00 55.0 2 - - C1234.5 - 4.50 6.00 11.00 55.0 2 - - C1235.6 - 4.50 6.00 13.00 57.0 2 - - C1235.0 - 5.50 6.00 13.00 57.0 2 - - C1235.5 - 5.50 6.00 13.00 57.0 2 - - C1236.0 - 6.00 6.00 13.00 57.0 2 - - C1237.5 - 6.50 10.00 16.00 66.0	C1232.5	_	2.50	6.00	8.00	52.0	2	_	_
C1233.5 - 3.50 6.00 10.00 54.0 2 - - C1235/32 ¹¹ 5/32 3.97 6.00 11.00 55.0 2 - - C1234.0 - 4.00 6.00 11.00 55.0 2 - - C1234.5 - 4.50 6.00 11.00 55.0 2 - - C1235.6 - 4.50 6.00 13.00 57.0 2 - - C1235.0 - 5.50 6.00 13.00 57.0 2 - - C1235.5 - 5.50 6.00 13.00 57.0 2 - - C1236.5 - 5.50 6.00 13.00 57.0 2 - - C1231/4 ¹¹¹ 1/4 6.35 10.00 16.00 66.0 2 - - C1237.5 - 7.50 10.00 16.00 66.0	C1233.0	-	3.00	6.00	8.00	52.0	2	-	-
C1235/32 ¹¹ 5/32 3.97 6.00 11.00 55.0 2 — — C1234.0 — 4.00 6.00 11.00 55.0 2 — — C1234.5 — 4.50 6.00 11.00 55.0 2 — — C1233/16 ¹¹ 3/16 4.76 6.00 13.00 57.0 2 — — C1235.0 — 5.00 6.00 13.00 57.0 2 — — C1235.5 — 5.50 6.00 13.00 57.0 2 — — C1236.0 — 6.00 6.00 13.00 57.0 2 — — C1231/4 ¹¹ 1/4 6.35 10.00 16.00 66.0 2 — — C1237.6 — 6.50 10.00 16.00 66.0 2 — — C1237.5 — 7.50 10.00 19.00 69.0 <td>C1231/8 1)</td> <td>1/8</td> <td>3.18</td> <td>6.00</td> <td>10.00</td> <td>54.0</td> <td>2</td> <td>-</td> <td>_</td>	C1231/8 1)	1/8	3.18	6.00	10.00	54.0	2	-	_
C1234.0 − 4.00 6.00 11.00 55.0 2 − − C1234.5 − 4.50 6.00 11.00 55.0 2 − − C1233/16 ¹¹ 3/16 4.76 6.00 13.00 57.0 2 − − C1235.0 − 5.00 6.00 13.00 57.0 2 − − C1235.5 − 5.50 6.00 13.00 57.0 2 − − C1236.0 − 6.00 6.00 13.00 57.0 2 − − C1236.5 − 6.00 6.00 13.00 57.0 2 − − C1237.4 1/4 6.35 10.00 16.00 66.0 2 − − C1237.5 − 6.50 10.00 16.00 66.0 2 − − C1237.6 7.6 7.50 10.00 19.00 69.0	C1233.5	_	3.50	6.00	10.00	54.0	2	-	_
C1234.5 − 4.50 6.00 11.00 55.0 2 − − C1233/16 ¹¹ 3/16 4.76 6.00 13.00 57.0 2 − − C1235.0 − 5.00 6.00 13.00 57.0 2 − − C1235.5 − 5.50 6.00 13.00 57.0 2 − − C1236.0 − 6.00 6.00 13.00 57.0 2 − − C1231/4 ¹¹ 1/4 6.35 10.00 16.00 66.0 2 − − C1237.0 − 6.50 10.00 16.00 66.0 2 − − C1237.5 − 7.50 10.00 16.00 66.0 2 − − C1237.5 − 7.50 10.00 19.00 69.0 2 − − C1238.0 − 8.00 10.00 19.00 69.0	C1235/32 1)	5/32	3.97	6.00	11.00	55.0	2	-	_
C1233/16 ¹¹ 3/16 4.76 6.00 13.00 57.0 2 — — C1235.0 — 5.00 6.00 13.00 57.0 2 — — C1235.5 — 5.50 6.00 13.00 57.0 2 — — C1236.0 — 6.00 6.00 13.00 57.0 2 — — C1231/4 ¹¹ 1/4 6.35 10.00 16.00 66.0 2 — — C1237.0 — 6.50 10.00 16.00 66.0 2 — — C1237.5 — 7.50 10.00 16.00 66.0 2 — — C1237.5 — 7.50 10.00 19.00 69.0 2 — — C1238.0 7.94 10.00 19.00 69.0 2 — — C1238.5 — 8.50 10.00 19.00 69.0 2	C1234.0	-	4.00	6.00	11.00	55.0	2	-	_
C1235.0 - 5.00 6.00 13.00 57.0 2 - - C1235.5 - 5.50 6.00 13.00 57.0 2 - - C1236.0 - 6.00 6.00 13.00 57.0 2 - - C1231/4¹¹¹ 1/4 6.35 10.00 16.00 66.0 2 - - C1237.0 - 6.50 10.00 16.00 66.0 2 - - C1237.5 - 7.50 10.00 16.00 66.0 2 - - C1235/16¹¹¹ 5/16 7.94 10.00 19.00 69.0 2 - - C1238.0 - 8.50 10.00 19.00 69.0 2 - - C1239.0 - 9.00 10.00 19.00 69.0 2 - - C1239.5 - 9.50 10.00 19.00 69.0	C1234.5	_	4.50	6.00	11.00	55.0	2	_	_
C1235.5 - 5.50 6.00 13.00 57.0 2 - - C1236.0 - 6.00 6.00 13.00 57.0 2 - - C1231/4¹¹¹ 1/4 6.35 10.00 16.00 66.0 2 - - C1236.5 - 6.50 10.00 16.00 66.0 2 - - C1237.0 - 7.00 10.00 16.00 66.0 2 - - C1237.5 - 7.50 10.00 16.00 66.0 2 - - C1235/16¹¹¹ 5/16 7.94 10.00 19.00 69.0 2 - - C1238.0 - 8.50 10.00 19.00 69.0 2 - - C1239.0 - 9.00 10.00 19.00 69.0 2 - - C1231/6¹¹ 3/8 9.52 10.00 22.00 72.0 </th <th>C1233/16 1)</th> <th>3/16</th> <th>4.76</th> <th>6.00</th> <th>13.00</th> <th>57.0</th> <th>2</th> <th>_</th> <th>_</th>	C1233/16 1)	3/16	4.76	6.00	13.00	57.0	2	_	_
C1236.0 − 6.00 6.00 13.00 57.0 2 − − C1231/4 ¹¹ 1/4 6.35 10.00 16.00 66.0 2 − − C1236.5 − 6.50 10.00 16.00 66.0 2 − − C1237.0 − 7.00 10.00 16.00 66.0 2 − − C1237.5 − 7.50 10.00 16.00 66.0 2 − − C1235/16¹¹¹ 5/16 7.94 10.00 19.00 69.0 2 − − C1238.0 − 8.50 10.00 19.00 69.0 2 − − C1239.0 − 8.50 10.00 19.00 69.0 2 − − C1239.5 − 9.50 10.00 19.00 69.0 2 − − C1233/8 ¹¹ 3/8 9.52 10.00 22.00 72.0	C1235.0	_	5.00	6.00	13.00	57.0	2	_	_
C1231/4 ¹¹ 1/4 6.35 10.00 16.00 66.0 2 - - C1236.5 - 6.50 10.00 16.00 66.0 2 - - C1237.0 - 7.00 10.00 16.00 66.0 2 - - C1237.5 - 7.50 10.00 16.00 66.0 2 - - C1235/16¹¹¹ 5/16 7.94 10.00 19.00 69.0 2 - - C1238.0 - 8.00 10.00 19.00 69.0 2 - - C1238.5 - 8.50 10.00 19.00 69.0 2 - - C1239.0 - 9.00 10.00 19.00 69.0 2 - - C1239.5 - 9.50 10.00 19.00 69.0 2 - - C1233/8¹¹¹ 3/8 9.52 10.00 22.00 72.0	C1235.5	_	5.50	6.00	13.00	57.0	2	_	_
C1236.5 − 6.50 10.00 16.00 66.0 2 − − C1237.0 − 7.00 10.00 16.00 66.0 2 − − C1237.5 − 7.50 10.00 16.00 66.0 2 − − C1235/16 ¹¹ 5/16 7.94 10.00 19.00 69.0 2 − − C1238.0 − 8.00 10.00 19.00 69.0 2 − − C1238.5 − 8.50 10.00 19.00 69.0 2 − − C1239.0 − 9.00 10.00 19.00 69.0 2 − − C1239.5 − 9.50 10.00 19.00 69.0 2 − − C1233/8 ¹¹ 3/8 9.52 10.00 22.00 72.0 2 31.50 9.50 C12310.0 − 10.00 10.00 22.00 <th< td=""><td>C1236.0</td><td>_</td><td>6.00</td><td>6.00</td><td>13.00</td><td>57.0</td><td>2</td><td>_</td><td>_</td></th<>	C1236.0	_	6.00	6.00	13.00	57.0	2	_	_
C1237.0 - 7.00 10.00 16.00 66.0 2 - - C1237.5 - 7.50 10.00 16.00 66.0 2 - - C1235/16 1) 5/16 7.94 10.00 19.00 69.0 2 - - C1238.0 - 8.00 10.00 19.00 69.0 2 - - C1238.5 - 8.50 10.00 19.00 69.0 2 - - C1239.0 - 9.00 10.00 19.00 69.0 2 - - C1239.5 - 9.50 10.00 19.00 69.0 2 - - C1239.5 - 9.50 10.00 19.00 69.0 2 - - C1233/8 1) 3/8 9.52 10.00 22.00 72.0 2 31.50 9.50 C12310.0 - 10.00 10.00 22.00	C1231/4 1)	1/4	6.35	10.00	16.00	66.0	2	_	_
C1237.5 - 7.50 10.00 16.00 66.0 2 - - C1235/16 ¹⁾ 5/16 7.94 10.00 19.00 69.0 2 - - C1238.0 - 8.00 10.00 19.00 69.0 2 - - C1238.5 - 8.50 10.00 19.00 69.0 2 - - C1239.0 - 9.00 10.00 19.00 69.0 2 - - C1239.5 - 9.50 10.00 19.00 69.0 2 - - C1233/8 ¹⁾ 3/8 9.52 10.00 22.00 72.0 2 31.50 9.50 C12310.0 - 10.00 10.00 22.00 72.0 2 31.50 9.50	C1236.5	_	6.50	10.00	16.00	66.0	2	_	_
C1235/16 ¹⁾ 5/16 7.94 10.00 19.00 69.0 2 - - C1238.0 - 8.00 10.00 19.00 69.0 2 - - C1238.5 - 8.50 10.00 19.00 69.0 2 - - C1239.0 - 9.00 10.00 19.00 69.0 2 - - C1239.5 - 9.50 10.00 19.00 69.0 2 - - C1233/8 ¹⁾ 3/8 9.52 10.00 22.00 72.0 2 31.50 9.50 C12310.0 - 10.00 10.00 22.00 72.0 2 31.50 9.50	C1237.0	_	7.00	10.00	16.00	66.0	2	_	_
C1238.0 - 8.00 10.00 19.00 69.0 2 - - C1238.5 - 8.50 10.00 19.00 69.0 2 - - C1239.0 - 9.00 10.00 19.00 69.0 2 - - C1239.5 - 9.50 10.00 19.00 69.0 2 - - C1233/8 10 3/8 9.52 10.00 22.00 72.0 2 31.50 9.50 C12310.0 - 10.00 10.00 22.00 72.0 2 31.50 9.50	C1237.5	_	7.50	10.00	16.00	66.0	2	_	_
C1238.5 - 8.50 10.00 19.00 69.0 2 - - C1239.0 - 9.00 10.00 19.00 69.0 2 - - C1239.5 - 9.50 10.00 19.00 69.0 2 - - C1233/8 10 3/8 9.52 10.00 22.00 72.0 2 31.50 9.50 C12310.0 - 10.00 10.00 22.00 72.0 2 31.50 9.50	C1235/16 1)	5/16	7.94	10.00	19.00	69.0	2	_	_
C1239.0 - 9.00 10.00 19.00 69.0 2 - - C1239.5 - 9.50 10.00 19.00 69.0 2 - - C1233/8 ¹⁾ 3/8 9.52 10.00 22.00 72.0 2 31.50 9.50 C12310.0 - 10.00 10.00 22.00 72.0 2 31.50 9.50	C1238.0	_	8.00	10.00	19.00	69.0	2	_	_
C1239.5 - 9.50 10.00 19.00 69.0 2 - - C1233/8 ¹¹ 3/8 9.52 10.00 22.00 72.0 2 31.50 9.50 C12310.0 - 10.00 10.00 22.00 72.0 2 31.50 9.50	C1238.5	-	8.50	10.00	19.00	69.0	2	-	-
C1233/8 ¹) 3/8 9.52 10.00 22.00 72.0 2 31.50 9.50 C12310.0 - 10.00 10.00 22.00 72.0 2 31.50 9.50	C1239.0	-	9.00	10.00	19.00	69.0	2	-	_
C12310.0 - 10.00 10.00 22.00 72.0 2 31.50 9.50	C1239.5	_	9.50	10.00	19.00	69.0	2	_	_
	C1233/8 1)	3/8	9.52	10.00	22.00	72.0	2	31.50	9.50
C12311.0 - 11.00 12.00 22.00 79.0 2	C12310.0	_	10.00	10.00	22.00	72.0	2	31.50	9.50
	C12311.0	_	11.00	12.00	22.00	79.0	2	_	_

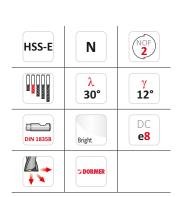
	DC	DC	DCON MS	APMX	OAL	NOF	ĽŨ	DN
	(дюйм)	(мм)	(MM)	(MM)	(мм)		(мм)	(MM)
C12312.0	_	12.00	12.00	26.00	83.0	2	37.50	11.50
C1231/2 1)	1/2	12.70	12.00	26.00	83.0	2	37.50	11.50
C12313.0	_	13.00	12.00	26.00	83.0	2	37.50	11.50
C12314.0	_	14.00	12.00	26.00	83.0	2	37.50	11.50
C12315.0	_	15.00	12.00	26.00	83.0	2	37.50	11.50
C12316.0	_	16.00	16.00	32.00	92.0	2	43.50	15.50
C12318.0	_	18.00	16.00	32.00	92.0	2	43.50	15.50
C12320.0	_	20.00	20.00	38.00	104.0	2	53.50	19.50
C12322.0	_	22.00	20.00	38.00	104.0	2	53.50	19.50
C12325.0	_	25.00	25.00	45.00	121.0	2	64.50	24.50
C12330.0	-	30.00	25.00	45.00	121.0	2	64.50	24.50

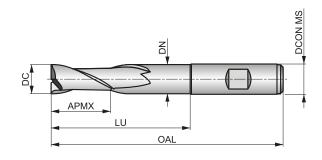

¹⁾ DC с допуском – 0.0005" / – 0.0013".

Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования большинства материалов. Покрытие TiCN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.


P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■113 D	■126 D	■ 131 D	■ 97 D	■85 D	Z 75 C	■74 D	■59 C	Z 50 C	■ 44 C	Z 37 C	Z 31 C	Z 62 D	 52 D
M2.1	M2.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1
 55 D	∠ 45 C	Z 26 B	Z 25 B	■55 D	■41 D	■31 D	■98 D	■80 D	■ 64 C	■ 87 D	■ 67 D	■ 54 B	■81 C
K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1
■ 61 C	■ 45 C	■ 38 B	■ 32 B	■91 C	■ 69 C	■53 C	 159 F	■ 120 E	Z 80 E	Z 80 D	■ 72 D	■ 51 D	■ 84 D
N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2		
■ 50 D	■ 25 D	≥ 84 D	■ 45 C	■ 35 C	≥ 15 B	■33 B	■ 14 B	■ 25 B	■ 10 B	■ 20 B	≥ 8B		


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(мм)	(мм)	(MM)		(мм)	(MM)
C1392.0	2.00	6.00	7.00	51.0	2	-	_
C1393.0	3.00	6.00	8.00	52.0	2	-	_
C1394.0	4.00	6.00	11.00	55.0	2	_	_
C1395.0	5.00	6.00	13.00	57.0	2	_	_
C1395.5	5.50	6.00	13.00	57.0	2	_	_
C1396.0	6.00	6.00	13.00	57.0	2	_	_
C1396.5	6.50	10.00	16.00	66.0	2	_	_
C1397.0	7.00	10.00	16.00	66.0	2	-	_
C1397.5	7.50	10.00	16.00	66.0	2	-	-
C1398.0	8.00	10.00	19.00	69.0	2	_	_
C1398.5	8.50	10.00	19.00	69.0	2	_	-
C1399.0	9.00	10.00	19.00	69.0	2	-	-
C1399.5	9.50	10.00	19.00	69.0	2	-	-
C13910.0	10.00	10.00	22.00	72.0	2	31.50	9.50
C13911.0	11.00	12.00	22.00	79.0	2	_	_
C13912.0	12.00	12.00	26.00	83.0	2	37.50	11.50
C13913.0	13.00	12.00	26.00	83.0	2	37.50	11.50
C13914.0	14.00	12.00	26.00	83.0	2	37.50	11.50
C13915.0	15.00	12.00	26.00	83.0	2	37.50	11.50
C13916.0	16.00	16.00	32.00	92.0	2	43.50	15.50
C13918.0	18.00	16.00	32.00	92.0	2	43.50	15.50
C13920.0	20.00	20.00	38.00	104.0	2	53.50	19.50
C13922.0	22.00	20.00	38.00	104.0	2	53.50	19.50
C13925.0	25.00	25.00	45.00	121.0	2	64.50	24.50

Фреза удлиненной конструкции из быстрорежущей стали с кобальтом

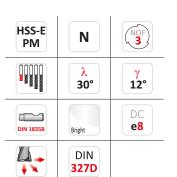
Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и геометрию для фрезерования преимущественно мягких сталей и цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

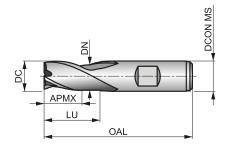
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 46 C	■ 52 C	■ 54 C	■ 40 C	Z 35 C	Z 32 C	Z 26 B	■ 19 B	Z 34 C	≥ 29 C	■ 31 C	Z 25 B	■ 30 C	Z 22 C
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 17 C	∠ 49 C	∠ 40 C	Z 32 B	■ 44 C	Z 33 C	Z 27 A	∠ 40 B	Z 30 B	Z 22 B	∠ 19 A	∠ 16 A	∠ 46 B	Z 34 B
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1
Z 27 B	≥ 81 E	Z 60 D	■ 41 D	■ 41 C	Z 37 C	Z 26 C	■ 43 C	■ 25 C	■ 13 C	∠ 43 C	■ 30 B	Z 25 B	Z 20 A
S3.1	S4.1												

DCON MS с допуском h6.

∠ 12 A


∠ 15 A

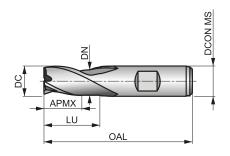

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C1352.0	2.00	6.00	7.00	54.0	2	18.00	1.80
C1353.0	3.00	6.00	8.00	56.0	2	20.00	2.80
C1354.0	4.00	6.00	11.00	63.0	2	27.00	3.70
C1355.0	5.00	6.00	13.00	68.0	2	32.00	4.70
C1356.0	6.00	6.00	13.00	68.0	2	32.00	5.70
C1358.0	8.00	10.00	19.00	88.0	2	48.00	7.50
C13510.0	10.00	10.00	22.00	95.0	2	54.50	9.50
C13512.0	12.00	12.00	26.00	110.0	2	64.50	11.50
C13514.0	14.00	12.00	26.00	110.0	2	64.50	11.50
C13516.0	16.00	16.00	32.00	123.0	2	74.50	15.50
C13518.0	18.00	16.00	32.00	123.0	2	74.50	15.50
C13520.0	20.00	20.00	38.00	141.0	2	90.50	19.50

Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования преимущественно мягких сталей, цветных и титановых сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента..

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 54 E	■ 61 E	■ 63 E	■ 47 E	■ 41 E	Z 38 E	■ 31 D	Z 23 D	Z 36 E	Z 30 E	Z 32 E	Z 26 D	Z 32 E	≥ 24 E
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 18 E	≥ 59 E	∠ 48 E	Z 38 D	 52 E	∠ 40 E	■ 32 D	∠ 48 D	■ 37 D	Z 27 D	Z 23 C	∠ 19 C	≥ 55 D	∠ 41 D
K5.3	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1	S3.1	S4.1
Z 32 D	Z 50 F	 ■ 50 E	∠ 45 E	Z 32 E	■52 E	■30 E	■16 E	■ 52 E	■33 D	Z 26 D	Z 20 C	■ 15 C	■ 12 C


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(мм)	(мм)	(мм)	(MM)		(MM)	(MM)
C3063.0	3.00	6.00	5.00	49.0	3	_	_
C3064.0	4.00	6.00	7.00	51.0	3	_	_
C3065.0	5.00	6.00	8.00	52.0	3	_	_
C3066.0	6.00	6.00	8.00	52.0	3	_	_
C3067.0	7.00	10.00	10.00	60.0	3	_	_
C3068.0	8.00	10.00	11.00	61.0	3	_	_
C3069.0	9.00	10.00	11.00	61.0	3	_	_
C3069.5	9.50	10.00	11.00	61.0	3	_	_
C30610.0	10.00	10.00	13.00	63.0	3	22.50	9.50
C30611.0	11.00	12.00	13.00	70.0	3	_	_
C30612.0	12.00	12.00	16.00	73.0	3	27.50	11.50
C30614.0	14.00	12.00	16.00	73.0	3	27.50	11.50
C30615.0	15.00	12.00	16.00	73.0	3	27.50	11.50
C30616.0	16.00	16.00	19.00	79.0	3	30.50	15.50
C30618.0	18.00	16.00	19.00	79.0	3	30.50	15.50
C30620.0	20.00	20.00	22.00	88.0	3	37.50	19.50
C30622.0	22.00	20.00	22.00	88.0	3	37.50	19.50
C30625.0	25.00	25.00	26.00	102.0	3	45.50	24.50
C30630.0	30.00	25.00	26.00	102.0	3	45.50	24.50

Фреза из порошковой быстрорежущей стали с кобальтом

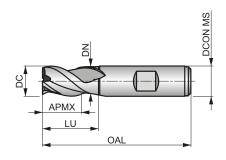
Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования большинства материалов. Покрытие Alcrona повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 ■133 E ■ 148 E ■ 154 E ■ 114 E ■ 100 E ■88 D ■ 88 E ■71 D ■ 60 D ■ 53 D ■ 45 D **Z** 37 D **∠** 69 E **≥** 58 E M2.2 **K2.2 K2.3** M2.1 M3.1 M3.2 M3.3 M4.1 K1.1 K1.2 K1.3 K2.1 K3.1 K3.2 **∠**61 E **Z** 50 D **Z** 52 D **∠**45 D **■**41 C **Z**30 C ■65 E ■48 E ■36 E ■ 117 E ■ 95 E ■76 D ■ 103 E ■ 79 E K4.1 K4.2 K4.3 K4.4 K4.5 K5.1 **N1.3** N2.1 **N2.2** N2.3 N3.1 ■ 64 D ■96 D ■72 D ■53 D ■45 C **■**38 C ■108 D ■82 D ■ 63 D **≥**89 F **≥** 89 E ■80 E ■ 57 E ■ 93 E N3.3 N3.2 N4.1 **S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2** ■ 55 E **28** E **≥** 93 E ■ 50 D ■ 40 D **Z**20 C ■ 40 C **21** C ■ 30 C **■** 15 C **23** C **■** 12 C

DCON MS с допуском h6	с допуском h6
-----------------------	---------------

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(мм)	(MM)	(MM)	(MM)		(MM)	(мм)
C3533.0	3.00	6.00	5.00	49.0	3	_	-
C3533.5	3.50	6.00	6.00	50.0	3	_	_
C3534.0	4.00	6.00	7.00	51.0	3	-	_
C3534.5	4.50	6.00	7.00	51.0	3	-	_
C3534.8 1)	4.80	6.00	8.00	52.0	3	_	_
C3535.0	5.00	6.00	8.00	52.0	3	-	_
C3535.5	5.50	6.00	8.00	52.0	3	_	_
C3536.0	6.00	6.00	8.00	52.0	3	-	-
C3536.5	6.50	10.00	10.00	60.0	3	_	_
C3537.0	7.00	10.00	10.00	60.0	3	-	_
C3537.5	7.50	10.00	10.00	60.0	3	-	_
C3537.75 1)	7.75	10.00	11.00	61.0	3	-	_
C3538.0	8.00	10.00	11.00	61.0	3	_	_
C3538.5	8.50	10.00	11.00	61.0	3	-	_
C3539.0	9.00	10.00	11.00	61.0	3	-	_
C3539.5	9.50	10.00	11.00	61.0	3	_	_
C35310.0	10.00	10.00	13.00	63.0	3	22.50	9.50
C35311.0	11.00	12.00	13.00	70.0	3	-	_
C35312.0	12.00	12.00	16.00	73.0	3	27.50	11.50
C35313.0	13.00	12.00	16.00	73.0	3	27.50	11.50
C35314.0	14.00	12.00	16.00	73.0	3	27.50	11.50
C35315.0	15.00	12.00	16.00	73.0	3	27.50	11.50
C35316.0	16.00	16.00	19.00	79.0	3	30.50	15.50
C35318.0	18.00	16.00	19.00	79.0	3	30.50	15.50
C35320.0	20.00	20.00	22.00	88.0	3	37.50	19.50

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C35322.0	22.00	20.00	22.00	88.0	3	37.50	19.50
C35325.0	25.00	25.00	26.00	102.0	3	45.50	24.50
C35328.0	28.00	25.00	26.00	102.0	3	45.50	24.50
C35330.0	30.00	25.00	26.00	102.0	3	45.50	24.50

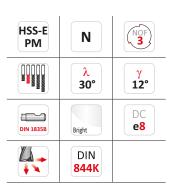

 $^{^{1)}}$ DC с допуском h10.

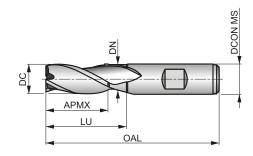
Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 40° и геометрию для фрезерования преимущественно конструкционных и нержавеющих сталей, а также цветных сплавов. Покрытие Alcrona повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	M2.3	M3.1
■135 E	■ 151 E	■ 157 E	■ 116 E	■ 102 E	■ 94 E	Z 75 D	 ■ 56 D	■92 E	■ 78 E	■ 82 E	■ 67 D	■ 56 D	■ 64 D
M3.2	M3.3	M4.1	M4.2	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1
■ 55 D	■ 50 C	■35 C	■30 C	■177 G	■ 133 F	Z 89 F	≥ 89 E	≥ 80 E	≥ 57 E	≥ 93 E	 55 E	■ 28 E	≥ 93 E
S1.1													


■ 50 D


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(мм)
C3672.0	2.00	6.00	4.00	48.0	3	_	-
C3673.0	3.00	6.00	5.00	49.0	3	_	_
C3674.0	4.00	6.00	7.00	51.0	3	_	_
C3675.0	5.00	6.00	8.00	52.0	3	-	_
C3676.0	6.00	6.00	8.00	52.0	3	-	-
C3677.0	7.00	10.00	10.00	60.0	3	-	-
C3678.0	8.00	10.00	11.00	61.0	3	-	_
C36710.0	10.00	10.00	13.00	63.0	3	22.50	9.50
C36711.0	11.00	12.00	13.00	70.0	3	_	_
C36712.0	12.00	12.00	16.00	73.0	3	27.50	11.50
C36714.0	14.00	12.00	16.00	73.0	3	27.50	11.50
C36716.0	16.00	16.00	19.00	79.0	3	30.50	15.50
C36718.0	18.00	16.00	19.00	79.0	3	30.50	15.50
C36720.0	20.00	20.00	22.00	88.0	3	37.50	19.50

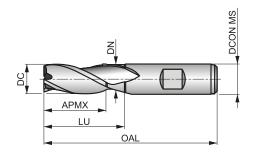
Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования преимущественно мягких сталей, цветных, титановых и жаропрочных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 52 D	■ 58 D	■ 60 D	■ 44 D	■39 D	Z 36 D	Z 29 C	Z 21 C	Z 36 D	■ 30 D	Z 32 D	Z 26 C	Z 30 D	Z 22 D
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 17 D	≥ 55 D	∠ 45 D	Z 36 C	∠ 49 D	Z 37 D	Z 30 B	■ 45 C	Z 34 C	Z 25 C	Z 22 B	■ 18 B	■ 51 C	Z 39 C
K5.3	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1	S3.1	S4.1
■ 30 C	∠ 48 E	■ 48 D	∠ 143 D	■ 31 D	■ 50 D	■ 29 D	■ 15 D	 ■ 50 D	■ 29 C	Z 24 C	■ 17 B	■13 B	■10 B

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C3052.0	2.00	6.00	7.00	51.0	3	_	_
C3052.5	2.50	6.00	8.00	52.0	3	-	_
C3053.0	3.00	6.00	8.00	52.0	3	_	_
C3053.5	3.50	6.00	10.00	54.0	3	_	_
C3054.0	4.00	6.00	11.00	55.0	3	-	_
C3054.5	4.50	6.00	11.00	55.0	3	-	_
C3055.0	5.00	6.00	13.00	57.0	3	_	_
C3055.5	5.50	6.00	13.00	57.0	3	_	_
C3056.0	6.00	6.00	13.00	57.0	3	-	-
C3056.5	6.50	10.00	16.00	66.0	3	-	-
C3057.0	7.00	10.00	16.00	66.0	3	_	-
C3057.5	7.50	10.00	16.00	66.0	3	-	-
C3058.0	8.00	10.00	19.00	69.0	3	-	-
C3058.5	8.50	10.00	19.00	69.0	3	_	_
C3059.0	9.00	10.00	19.00	69.0	3	-	_
C30510.0	10.00	10.00	22.00	72.0	3	31.50	9.50
C30511.0	11.00	12.00	22.00	79.0	3	_	_
C30512.0	12.00	12.00	26.00	83.0	3	37.50	11.50
C30513.0	13.00	12.00	26.00	83.0	3	37.50	11.50
C30514.0	14.00	12.00	26.00	83.0	3	37.50	11.50
C30515.0	15.00	12.00	26.00	83.0	3	37.50	11.50
C30516.0	16.00	16.00	32.00	92.0	3	43.50	15.50
C30517.0	17.00	16.00	32.00	92.0	3	43.50	15.50
C30518.0	18.00	16.00	32.00	92.0	3	43.50	15.50
C30519.0	19.00	16.00	32.00	92.0	3	43.50	15.50
C30520.0	20.00	20.00	38.00	104.0	3	53.50	19.50
C30522.0	22.00	20.00	38.00	104.0	3	53.50	19.50

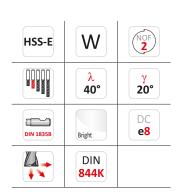

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(мм)	(MM)
C30525.0	25.00	25.00	45.00	121.0	3	_	_
C30528.0	28.00	25.00	45.00	121.0	3	-	_
C30530.0	30.00	25.00	45.00	121.0	3	-	_
C30532.0	32.00	32.00	53.00	133.0	3	_	_

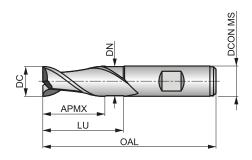
Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования большинства материалов. Покрытие Alcrona повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

Р1.1 Р1.2 Р1.3 Р2.1 Р2.2 Р2.3 Р3.1 Р3.2 Р3.3 Р4.1 Р4.2 Р4.3 М1.1 М1.2


P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■126 D	■141 D	■ 146 D	■ 108 D	■95 D	■84 C	■81 D	■65 C	■ 55 C	■ 48 C	■ 41 C	Z 34 C	Z 69 D	Z 58 D
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
∠ 61 D	Z 50 C	Z 47 C	Z 40 C	Z 36 B	Z 25 B	■ 60 D	■ 44 D	■33 D	■111 D	■ 90 D	■72 C	■ 98 D	■75 D
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.3	N2.1	N2.2	N2.3	N3.1
■61 B	■91 C	■68 C	■ 50 C	■ 43 B	■36 B	■ 103 C	■77 C	■ 60 C	≥ 89 E	∠ 89 D	■ 80 D	■ 57 D	■ 93 D
N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2		
■ 55 D	■ 28 D	■ 193 D	45 C	35 C	■115 R	■ 33 B	■114 R	■ 25 B	■ 110 B	■ 20 B	■ 18 B		

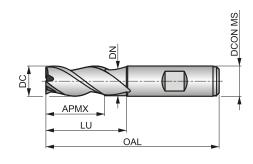

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(мм)
C3523.0	3.00	6.00	8.00	52.0	3	-	_
C3524.0	4.00	6.00	11.00	55.0	3	_	_
C3525.0	5.00	6.00	13.00	57.0	3	_	_
C3526.0	6.00	6.00	13.00	57.0	3	_	_
C3528.0	8.00	10.00	19.00	69.0	3	_	_
C35210.0	10.00	10.00	22.00	72.0	3	31.50	9.50
C35212.0	12.00	12.00	26.00	83.0	3	37.50	11.50
C35214.0	14.00	12.00	26.00	83.0	3	37.50	11.50
C35216.0	16.00	16.00	32.00	92.0	3	43.50	15.50
C35218.0	18.00	16.00	32.00	92.0	3	43.50	15.50
C35220.0	20.00	20.00	38.00	104.0	3	53.50	19.50

Фреза из быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 40° и геометрию для фрезерования преимущественно цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

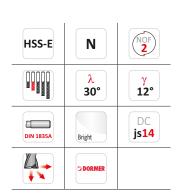
P1.1	P1.2	P1.3	P2.1	P2.2	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2	N1.1	N1.2	N1.3
Z 46 D	 52 D	 ■ 54 D	■ 40 D	■ 35 D	Z 32 D	Z 27 D	Z 28 D	Z 23 C	Z 22 C	■ 19 C	■ 142 F	■ 107 E	■ 72 E
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1					
■ 72 D	64 D	∠ 146 D	■ 75 D	■ 44 D	■ 22 D	■75 D	■ 29 D	Z 28 C					

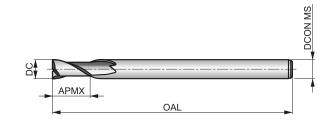

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C1592.0	2.00	6.00	7.00	51.0	2	_	_
C1593.0	3.00	6.00	8.00	52.0	2	_	_
C1594.0	4.00	6.00	11.00	55.0	2	-	-
C1595.0	5.00	6.00	13.00	57.0	2	_	_
C1596.0	6.00	6.00	13.00	57.0	2	_	_
C1598.0	8.00	10.00	19.00	69.0	2	_	_
C15910.0	10.00	10.00	22.00	72.0	2	_	_
C15912.0	12.00	12.00	26.00	83.0	2	_	_
C15914.0	14.00	12.00	26.00	83.0	2	37.50	11.50
C15916.0	16.00	16.00	32.00	92.0	2	43.50	15.50
C15918.0	18.00	16.00	32.00	92.0	2	43.50	15.50
C15920.0	20.00	20.00	38.00	104.0	2	53.50	19.50

Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 40° и геометрию для фрезерования преимущественно цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.


P1.1	P1.2	P1.3	P2.1	P2.2	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2	N1.1	N1.2	N1.3
≥ 50 D	≥ 56 D	Z 58 D	∠ 43 D	Z 38 D	■ 34 D	Z 29 D	■ 31 D	Z 25 C	Z 24 C	Z 21 C	■ 142 F	■ 107 E	■ 72 E
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1					
■ 72 D	64 D	146 D	75 D	■ 44 D	■ 22 D	75 D	■ 29 D	30 C					


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(мм)	(MM)		(MM)	(мм)
C33610.0	10.00	10.00	22.00	72.0	3	31.50	9.50
C33612.0	12.00	12.00	26.00	83.0	3	37.50	11.50
C33614.0	14.00	12.00	26.00	83.0	3	37.50	11.50
C33616.0	16.00	16.00	32.00	92.0	3	43.50	15.50
C33618.0	18.00	16.00	32.00	92.0	3	43.50	15.50
C33620.0	20.00	20.00	38.00	104.0	3	53.50	19.50
C33622.0	22.00	20.00	38.00	104.0	3	53.50	19.50
C33625.0	25.00	25.00	45.00	121.0	3	64.50	24.50
C33630.0	30.00	25.00	45.00	121.0	3	64.50	24.50

Фреза удлиненной конструкции из быстрорежущей стали с кобальтом

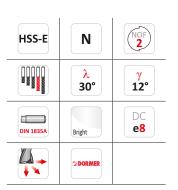
Конструкция фрезы имеет короткую режущую часть, угол наклона спирали 30° и геометрию для фрезерования преимущественно мягких сталей и цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

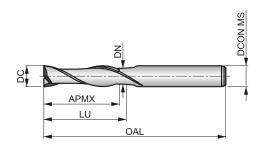
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 46 C	■ 52 C	■ 54 C	■ 40 C	Z 35 C	Z 32 C	Z 26 B	■ 19 B	Z 34 C	Z 29 C	Z 31 C	Z 25 B	Z 30 C	Z 22 C
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 17 C	∠ 49 C	■ 40 C	≥ 32 B	■ 44 C	⊿ 33 C	Z 27 A	∠ 40 B	■ 30 B	Z 22 B	∠ 19 A	∠ 16 A	∠ 46 B	≥ 34 B
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1
Z 27 B	≥ 81 E	∠ 60 D	■ 41 D	■ 41 C	⊿ 37 C	Z 26 C	■ 43 C	■ 25 C	■ 13 C	∠ 43 C	■ 30 B	Z 25 B	Z 20 A
S3.1	S4.1												

DCON MS с допуском h6.

∠ 12 A


∠ 15 A


	DC	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
C1676.0	6.00	6.00	13.00	180.0	2
C1678.0	8.00	8.00	19.00	180.0	2
C16710.0	10.00	10.00	22.00	200.0	2
C16712.0	12.00	12.00	26.00	200.0	2
C16716.0	16.00	16.00	32.00	200.0	2

Фреза из быстрорежущей стали с кобальтом удлиненной конструкции

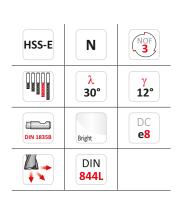
Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 30° и геометрию для фрезерования преимущественно мягких сталей и цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

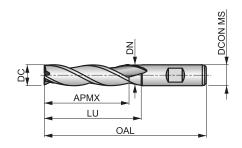
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 41 C	■ 46 C	■ 48 C	■35 C	■ 31 C	Z 28 C	Z 23 B	■ 17 B	Z 27 C	Z 23 C	Z 24 C	Z 20 B	Z 25 C	■ 19 C
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 14 C	■ 44 C	Z 36 C	≥ 29 B	⊿ 39 C	■ 30 C	■ 24 A	Z 36 B	Z 27 B	Z 20 B	■ 17 A	■ 14 A	∠ 41 B	■ 31 B
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1
■ 24 B	Z 76 E	 57 D	Z 38 D	Z 38 C	■ 34 C	Z 125 C	■40 C	■ 23 C	■ 12 C	■ 40 C	Z 125 B	Z 120 B	∠ 15 A
S3.1	\$4.1												

DCON MS с допуском h6.

∠9 A

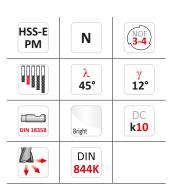

∠ 11 A

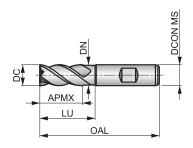

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C1225.0	5.00	5.00	22.00	65.0	2	-	-
C1226.0	6.00	6.00	27.00	75.0	2	_	_
C1227.0	7.00	8.00	33.00	85.0	2	_	_
C1228.0	8.00	8.00	33.00	85.0	2	-	-
C12210.0	10.00	10.00	40.00	95.0	2	-	-
C12212.0	12.00	12.00	45.00	110.0	2	_	_
C12214.0	14.00	12.00	52.00	125.0	2	_	-
C12216.0	16.00	16.00	58.00	140.0	2	69.50	15.50
C12218.0	18.00	16.00	65.00	150.0	2	76.50	15.50
C12220.0	20.00	20.00	70.00	160.0	2	85.50	19.50
C12222.0	22.00	20.00	75.00	170.0	2	90.50	19.50

Фреза из быстрорежущей стали с кобальтом удлиненной конструкции

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 30°, уменьшенную шейку и геометрию для фрезерования преимущественно мягких сталей, цветных и титановых сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.


P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 40 C	■ 45 C	■ 46 C	■34 C	Z 30 C	Z 28 C	Z 22 B	■ 16 B	Z 27 C	Z 23 C	Z 24 C	Z 20 B	Z 25 C	■ 19 C
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 14 C	Z 43 C	≥ 35 C	Z 28 B	■ 38 C	≥ 29 C	Z 24 A	■ 35 B	Z 27 B	Z 20 B	∠ 17 A	∠ 14 A	∠ 40 B	≥ 30 B
K5.3	N1.1	N1.2	N1.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1	S3.1	S4.1	
■ 23 B	76 F	■ 157 D	■ 38 D	■ 40 C	23 C	12 (■ 40 C	■ 25 B	■ 20 B	■13 A	10 A	■ 18 A	


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(мм)	(MM)	(MM)	(MM)		(MM)	(MM)
C3463.0	3.00	6.00	12.00	56.0	3	-	_
C3464.0	4.00	6.00	19.00	63.0	3	-	_
C3465.0	5.00	6.00	24.00	68.0	3	-	_
C3466.0	6.00	6.00	24.00	68.0	3	-	_
C3467.0	7.00	10.00	30.00	80.0	3	-	-
C3468.0	8.00	10.00	38.00	88.0	3	-	_
C3469.0	9.00	10.00	38.00	88.0	3	-	_
C34610.0	10.00	10.00	45.00	95.0	3	_	_
C34611.0	11.00	12.00	45.00	102.0	3	-	-
C34612.0	12.00	12.00	53.00	110.0	3	-	_
C34613.0	13.00	12.00	53.00	110.0	3	64.50	11.50
C34615.0	15.00	12.00	53.00	110.0	3	64.50	11.50
C34616.0	16.00	16.00	63.00	123.0	3	74.50	15.50
C34620.0	20.00	20.00	75.00	141.0	3	90.50	19.50

Фреза из порошковой быстрорежущей стали с кобальтом

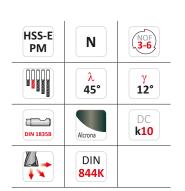
Конструкция фрезы имеет угол наклона спирали 45° и геометрию для фрезерования большинства материалов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 37 D	■33 C	■ 32 D	■ 26 C	■ 22 C	■19 C	■16 C	■ 13 C	■36 D	■30 D	■ 32 D	■ 26 C	Z 24 C	Z 21 C
M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3
■19 B	■ 13 B	■ 30 D	■ 22 D	■ 17 D	■ 55 D	■ 45 D	■36 C	■49 D	■37 D	■30 B	■ 45 C	■34 C	■ 25 C
K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■22 B	■ 18 B	■ 51 C	■39 C	■30 C	■ 43 D	■ 25 D	Z 29 C	■ 57 C	■10 B	■17 B	■7B	■13 B	■5 B
\$4.1	\$4.2												

DCON MS с допуском h6.

4 B


■10 B


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C2993.0	3.00	6.00	8.00	52.0	3	-	_
C2994.0	4.00	6.00	11.00	55.0	3	_	_
C2995.0	5.00	6.00	13.00	57.0	3	_	_
C2996.0	6.00	6.00	13.00	57.0	3	_	-
C2998.0	8.00	10.00	19.00	69.0	4	-	-
C29910.0	10.00	10.00	22.00	72.0	4	31.50	9.50
C29912.0	12.00	12.00	26.00	83.0	4	37.50	11.50
C29914.0	14.00	12.00	26.00	83.0	4	37.50	11.50
C29916.0	16.00	16.00	32.00	92.0	4	43.50	15.50
C29918.0	18.00	16.00	32.00	92.0	4	43.50	15.50
C29920.0	20.00	20.00	38.00	104.0	4	53.50	19.50

Фреза из порошковой быстрорежущей стали с кобальтом

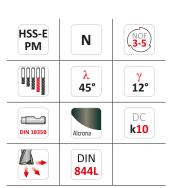
Конструкция фрезы имеет угол наклона спирали 45° и геометрию для фрезерования большинства материалов. Покрытие Alcrona повышает стойкость и производительность.

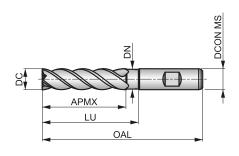
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 95 D	■84 C	■81 D	■ 65 C	■ 55 C	■48 C	■ 41 C	■ 34 C	■ 69 D	■ 58 D	■61 D	■ 50 C	■ 47 C	■ 40 C
M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3
■ 36 B	■ 25 B	■ 60 D	■ 44 D	■33 D	■ 111 D	■90 D	■ 72 C	■ 98 D	■ 75 D	■61 B	■91 C	■ 68 C	■ 50 C
K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■ 43 B	■36 B	■ 103 C	■77 C	■60 C	■93 D	■55 D	∠ 45 C	■ 85 C	■ 15 B	■33 B	■14 B	■ 25 B	■ 10 B
SA 1	\$4.2												

DCON MS с допуском h6.

■8B


20 B


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(мм)	(MM)
C9073.0	3.00	6.00	8.00	52.0	3	-	_
C9074.0	4.00	6.00	11.00	55.0	3	_	_
C9075.0	5.00	6.00	13.00	57.0	3	-	_
C9076.0	6.00	6.00	13.00	57.0	3	_	_
C9078.0	8.00	10.00	19.00	69.0	4	-	_
C90710.0	10.00	10.00	22.00	72.0	4	31.50	9.50
C90712.0	12.00	12.00	26.00	83.0	4	37.50	11.50
C90714.0	14.00	12.00	26.00	83.0	4	37.50	11.50
C90716.0	16.00	16.00	32.00	92.0	4	43.50	15.50
C90718.0	18.00	16.00	32.00	92.0	4	43.50	15.50
C90720.0	20.00	20.00	38.00	104.0	4	53.50	19.50
C90722.0	22.00	20.00	38.00	104.0	5	53.50	19.50
C90725.0	25.00	25.00	45.00	121.0	5	64.50	24.50
C90728.0	28.00	25.00	45.00	121.0	6	64.50	24.50
C90730.0	30.00	25.00	45.00	121.0	6	64.50	24.50
C90732.0	32.00	32.00	53.00	133.0	6	72.50	31.50

Фреза из порошковой быстрорежущей стали с кобальтом удлиненной конструкции

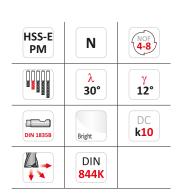
Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 45°, уменьшенную шейку и геометрию для фрезерования большинства материалов. Покрытие Alcrona повышает стойкость и производительность.

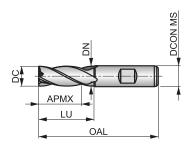
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 85 C	■ 75 B	■ 74 C	■ 59 B	■ 50 B	■ 44 B	■ 37 B	■31 B	■ 62 C	■ 52 C	■ 55 C	■ 45 B	■41 B	■35 B
M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3
■ 32 A	■ 25 A	■55 C	■41 C	■31 C	■ 98 C	■80 C	■ 64 B	■ 87 C	■ 67 C	■54 A	■81 B	■61 B	■45 B
K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■ 38 A	■32 A	■ 91 B	■ 69 B	■ 53 B	■83 C	■49 C	∠ 40 B	■35 B	■ 15 A	■33 A	■14 A	■ 25 A	■ 10 A
\$4.1	\$4.2												

DCON MS с допуском h6.

■8 A


20 A


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(мм)		(MM)	(мм)
C9206.0	6.00	6.00	24.00	68.0	3	_	-
C9208.0	8.00	10.00	38.00	88.0	4	_	_
C92010.0	10.00	10.00	45.00	95.0	4	54.50	9.50
C92012.0	12.00	12.00	53.00	110.0	4	64.50	11.50
C92014.0	14.00	12.00	53.00	110.0	4	64.50	11.50
C92016.0	16.00	16.00	63.00	123.0	4	74.50	15.50
C92018.0	18.00	16.00	63.00	123.0	4	74.50	15.50
C92020.0	20.00	20.00	75.00	141.0	4	90.50	19.50
C92022.0	22.00	20.00	75.00	141.0	5	90.50	19.50
C92025.0	25.00	25.00	90.00	166.0	5	109.50	24.50

Фреза из порошковой быстрорежущей стали с кобальтом

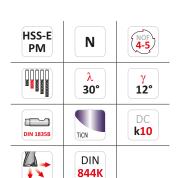
Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования преимущественно мягких сталей, цветных и титановых сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

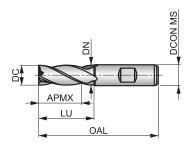
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 53 D	■ 59 D	■61 D	■ 45 D	■ 40 D	Z 36 D	Z 29 C	Z 22 C	Z 34 D	Z 29 D	Z 31 D	Z 25 C	Z 30 D	Z 22 D
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 17 D	 ■ 55 D	∠ 45 D	⊿ 36 C	∠ 49 D	Z 37 D	Z 30 B	∠ 45 C	Z 34 C	Z 25 C	Z 22 B	■ 18 B	■51 C	Z 39 C
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1
Z 30 C	≥ 95 F	 ✓ 71 E	∠ 48 E	∠ 48 D	∠ 43 D	Z 31 D	■50 D	■ 29 D	■ 15 D	≥ 50 D	■ 30 C	Z 25 C	Z 20 B
C2 1	S/1 1												

33.1 34.1 ■ 15 B **■** 12 B

	DC	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(дюйм)	(мм)	(MM)	(мм)	(MM)		(мм)	(MM)
C2472.0	_	2.00	6.00	7.00	51.0	4	_	_
C2472.5	_	2.50	6.00	8.00	52.0	4	_	_
C2473.0	_	3.00	6.00	8.00	52.0	4	_	_
C2471/8 ²⁾	1/8	3.18	6.00	10.00	54.0	4	_	_
C2473.5	-	3.50	6.00	10.00	54.0	4	-	_
C2474.0	_	4.00	6.00	11.00	55.0	4	_	_
C2474.5	_	4.50	6.00	11.00	55.0	4	_	_
C2473/16 ²⁾	3/16	4.76	6.00	13.00	57.0	4	-	_
C2475.0	_	5.00	6.00	13.00	57.0	4	-	_
C2475.5	_	5.50	6.00	13.00	57.0	4	_	_
C2476.0	_	6.00	6.00	13.00	57.0	4	_	_
C2471/4 ²⁾	1/4	6.35	10.00	16.00	66.0	4	-	_
C2476.5	-	6.50	10.00	16.00	66.0	4	-	_
C2477.0	_	7.00	10.00	16.00	66.0	4	_	_
C2477.5	_	7.50	10.00	16.00	66.0	4	_	_
C2475/16 ²⁾	5/16	7.94	10.00	19.00	69.0	4	-	_
C2478.0	_	8.00	10.00	19.00	69.0	4	-	_
C2478.5	_	8.50	10.00	19.00	69.0	4	_	_
C2479.0	_	9.00	10.00	19.00	69.0	4	_	_
C2479.5	_	9.50	10.00	19.00	69.0	4	_	_
C2473/8 ²⁾	3/8	9.52	10.00	22.00	72.0	4	31.50	9.50
C24710.0	_	10.00	10.00	22.00	72.0	4	31.50	9.50
C24711.0	_	11.00	12.00	22.00	79.0	4	_	_
C24712.0	_	12.00	12.00	26.00	83.0	4	37.50	11.50
C2471/2 ²⁾	1/2	12.70	12.00	26.00	83.0	4	37.50	11.50


	DC	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(дюйм)	(MM)	(MM)	(мм)	(мм)		(мм)	(мм)
C24713.0	-	13.00	12.00	26.00	83.0	4	37.50	11.50
C24714.0	-	14.00	12.00	26.00	83.0	4	37.50	11.50
C2479/16 ²⁾	9/16	14.29	12.00	26.00	83.0	4	37.50	11.50
C24715.0	_	15.00	12.00	26.00	83.0	4	37.50	11.50
C2475/8 ²⁾	5/8	15.88	16.00	32.00	92.0	4	43.50	15.50
C24716.0	-	16.00	16.00	32.00	92.0	4	43.50	15.50
C24717.0	_	17.00	16.00	32.00	92.0	4	43.50	15.50
C24718.0	_	18.00	16.00	32.00	92.0	4	43.50	15.50
C24719.0	-	19.00	16.00	32.00	92.0	4	43.50	15.50
C2473/4 ²⁾	3/4	19.05	20.00	38.00	104.0	4	53.50	18.50
C24720.0	_	20.00	20.00	38.00	104.0	4	53.50	19.50
C24721.0	_	21.00	20.00	38.00	104.0	4	53.50	19.50
C24722.0	-	22.00	20.00	38.00	104.0	5	53.50	19.50
C2477/8 ²⁾	7/8	22.22	20.00	38.00	104.0	5	53.50	19.50
C24723.0	_	23.00	20.00	38.00	104.0	5	53.50	19.50
C24724.0	_	24.00	25.00	45.00	121.0	5	64.50	23.50
C24725.0	_	25.00	25.00	45.00	121.0	5	64.50	24.50
C2471 ²⁾	1"	25.40	25.00	45.00	121.0	5	64.50	24.50
C24726.0	_	26.00	25.00	45.00	121.0	6	64.50	24.50
C24728.0	_	28.00	25.00	45.00	121.0	6	64.50	24.50
C24730.0	_	30.00	25.00	45.00	121.0	6	64.50	24.50
C24732.0	-	32.00	32.00	53.00	133.0	6	72.50	31.50
C24736.0 1)	_	36.00	32.00	53.00	133.0	6	72.50	31.50
C24740.0 1)	_	40.00	40.00	63.00	155.0	6	84.50	39.00
C24750.0 1)	_	50.00	50.00	75.00	177.0	8	96.50	48.00


 $^{^{1)}}$ Только HSS-E; нет возможности обработки центром фрезы. $^{2)}$ DC с допуском +0.0025" / – 0.0005".

Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования большинства материалов. Покрытие TiCN повышает стойкость и производительность.

■ 15 B

■14 B

■24 B

■ 10 B

■19 B

■8B

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 ■ 113 D ■ 126 D ■ 131 D ■ 97 D ■ 85 D **∠**75 C ■74 D ■ 59 C **Z** 50 C **44** C **Z**37 C **Z**31 C **∠** 62 D **Z** 52 D K1.3 M2.1 **M2.2 M3.3** M4.1 K1.1 **K2.1** K2.3 K3.1 K3.2 K3.3 K4.1 **≥** 55 D **∠** 45 C **Z** 26 B **Z** 25 B ■ 55 D ■41 D ■31 D ■97 D ■ 79 D ■ 63 C ■86 D ■66 D ■ 53 B ■80 C K4.2 K4.3 K4.4 K4.5 K5.1 **N1.1 N1.2** N1.3 N2.1 **N2.2** N2.3 N3.1 ■60 C ■ 44 C ■38 B ■31 B ■90 C **■**68 C **■** 52 C **∠** 159 F **Z** 80 E **Z**80 D ■72 D ■51 D ■84 D **Z** 120 E N3.3 **S1.1** N3.2 N4.1 **S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2**

■32 B

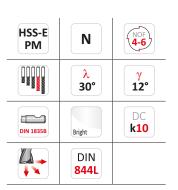
DCON MS с допуском h

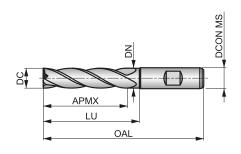
25 D

■84 D

■ 43 C

■35 C


■ 50 D


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(мм)	(MM)	(MM)	(MM)		(MM)	(MM)
C2462.0	2.00	6.00	7.00	51.0	4	_	-
C2463.0	3.00	6.00	8.00	52.0	4	_	_
C2464.0	4.00	6.00	11.00	55.0	4	_	_
C2465.0	5.00	6.00	13.00	57.0	4	_	_
C2466.0	6.00	6.00	13.00	57.0	4	_	_
C2467.0	7.00	10.00	16.00	66.0	4	_	_
C2468.0	8.00	10.00	19.00	69.0	4	_	_
C24610.0	10.00	10.00	22.00	72.0	4	31.50	9.50
C24611.0	11.00	12.00	22.00	79.0	4	_	_
C24612.0	12.00	12.00	26.00	83.0	4	37.50	11.50
C24613.0	13.00	12.00	26.00	83.0	4	37.50	11.50
C24614.0	14.00	12.00	26.00	83.0	4	37.50	11.50
C24615.0	15.00	12.00	26.00	83.0	4	37.50	11.50
C24616.0	16.00	16.00	32.00	92.0	4	43.50	15.50
C24618.0	18.00	16.00	32.00	92.0	4	43.50	15.50
C24620.0	20.00	20.00	38.00	104.0	4	53.50	19.50
C24622.0	22.00	20.00	38.00	104.0	5	53.50	19.50
C24625.0	25.00	25.00	45.00	121.0	5	64.50	24.50

Фреза из порошковой быстрорежущей стали с кобальтом удлиненной конструкции

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 30° и геометрию для фрезерования преимущественно мягких сталей, цветных и титановых сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

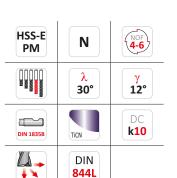
P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 46 C	■ 52 C	■ 54 C	■ 40 C	■ 35 C	Z 32 C	Z 26 B	■ 19 B	∠ 14 C	Z 12 C	Z 12 C	■ 10 B	Z 25 C	■ 19 C
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 14 C	∠ 49 C	■ 40 C	Z 32 B	■ 44 C	⊿ 33 C	Z 27 A	∠ 40 B	■ 30 B	Z 22 B	■ 19 A	∠ 16 A	∠ 46 B	■ 34 B
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1
Z 27 B	≥ 81 E	Z 60 D	∠ 41 D	■ 41 C	Z 37 C	Z 26 C	■43 C	■ 25 C	■ 13 C	∠ 43 C	■ 25 B	Z 20 B	∠ 13 A
S3 1	S4 1												

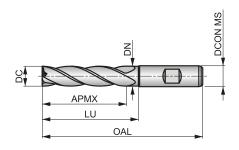
DCON MS с допуском h6.

∠8 A

✓ 10 A

	DC	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(дюйм)	(мм)	(мм)	(MM)	(мм)		(MM)	(мм)
C2732.0	_	2.00	6.00	10.00	54.0	4	_	_
C2732.5	_	2.50	6.00	12.00	56.0	4	_	_
C2733.0	_	3.00	6.00	12.00	56.0	4	_	_
C2731/8 ²⁾	1/8	3.18	6.00	15.00	59.0	4	-	_
C2733.5	_	3.50	6.00	15.00	59.0	4	_	_
C2734.0	_	4.00	6.00	19.00	63.0	4	_	_
C2734.5	_	4.50	6.00	19.00	63.0	4	_	_
C2733/16 ²⁾	3/16	4.76	6.00	24.00	68.0	4	_	_
C2735.0	_	5.00	6.00	24.00	68.0	4	_	_
C2735.5	_	5.50	6.00	24.00	68.0	4	_	_
C2736.0	_	6.00	6.00	24.00	68.0	4	_	_
C2731/4 ²⁾	1/4	6.35	10.00	30.00	80.0	4	_	_
C2737.0	_	7.00	10.00	30.00	80.0	4	_	_
C2738.0	_	8.00	10.00	38.00	88.0	4	_	_
C2739.0	_	9.00	10.00	38.00	88.0	4	_	_
C2733/8 ²⁾	3/8	9.52	10.00	45.00	95.0	4	54.50	9.50
C27310.0	_	10.00	10.00	45.00	95.0	4	54.50	9.50
C27311.0	_	11.00	12.00	45.00	102.0	4	_	_
C27312.0		12.00	12.00	53.00	110.0	4	64.50	11.50
C2731/2 ²⁾	1/2	12.70	12.00	53.00	110.0	4	64.50	11.50
C27313.0	_	13.00	12.00	53.00	110.0	4	64.50	11.50
C27314.0	_	14.00	12.00	53.00	110.0	4	64.50	11.50
C27315.0		15.00	12.00	53.00	110.0	4	64.50	11.50
C2735/8 ²⁾	5/8	15.88	16.00	63.00	123.0	4	74.50	15.50
C27316.0	_	16.00	16.00	63.00	123.0	4	74.50	15.50


	DC	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(дюйм)	(MM)	(MM)	(мм)	(MM)		(мм)	(MM)
C27318.0	_	18.00	16.00	63.00	123.0	4	74.50	15.50
C2733/4 ²⁾	3/4	19.05	20.00	75.00	141.0	4	90.50	18.50
C27320.0	_	20.00	20.00	75.00	141.0	4	90.50	19.50
C27322.0	_	22.00	20.00	75.00	141.0	5	90.50	19.50
C27325.0	_	25.00	25.00	90.00	166.0	5	109.50	24.50
C2731 ²⁾	1″	25.40	25.00	90.00	166.0	5	109.50	24.50
C27328.0	_	28.00	25.00	90.00	166.0	6	109.50	24.50
C27330.0	_	30.00	25.00	90.00	166.0	6	109.50	24.50
C27332.0	_	32.00	32.00	106.00	186.0	6	125.50	31.50
C27340.0 1)	_	40.00	40.00	125.00	217.0	6	146.50	39.00


 $^{^{\}rm 1)}$ Только HSS-E; нет возможности обработки центром фрезы. $^{\rm 2)}$ DC с допуском +0.0025" / – 0.0005".

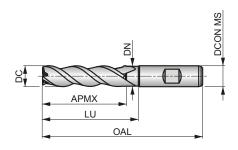
Фреза из порошковой быстрорежущей стали с кобальтом удлиненной конструкции

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 30°, уменьшенную шейку и геометрию для фрезерования большинства материалов. Покрытие TiCN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 99 C	■ 111 C	■ 115 C	■85 C	■75 C	∠ 66 B	■66 C	■ 53 B	∠ 45 B	■ 40 B	■ 34 B	Z 27 B	Z 55 C	∠ 46 C
M2.1	M2.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1
∠ 49 C	∠ 40 B	Z 21 A	Z 20 A	■50 C	■37 C	■28 C	■86 C	■ 70 C	■56 B	■ 76 C	■ 58 C	■ 47 A	■71 B
K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1
■53 B	■ 39 B	■33 A	■ 28 A	■ 80 B	■ 60 B	■ 46 B	∠ 139 E	■ 105 D	Z 70 D	Z 70 C	■ 63 C	■ 45 C	■73 C
N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2		
■ 43 C	■ 22 C	Z 73 C	■ 40 B	■30 B	■ 15 A	■ 27 A	■ 14 A	■ 20 A	■ 10 A	■16 A	∠ 8 A		

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(мм)	(мм)		(MM)	(MM)
C2952.0	2.00	6.00	10.00	54.0	4	_	-
C2953.0	3.00	6.00	12.00	56.0	4	-	_
C2954.0	4.00	6.00	19.00	63.0	4	_	_
C2955.0	5.00	6.00	24.00	68.0	4	_	_
C2956.0	6.00	6.00	24.00	68.0	4	-	_
C2957.0	7.00	10.00	30.00	80.0	4	-	_
C2958.0	8.00	10.00	38.00	88.0	4	_	_
C2959.0	9.00	10.00	38.00	88.0	4	_	_
C29510.0	10.00	10.00	45.00	95.0	4	54.50	9.50
C29511.0	11.00	12.00	45.00	102.0	4	_	_
C29512.0	12.00	12.00	53.00	110.0	4	64.50	11.50
C29515.0	15.00	12.00	53.00	110.0	4	64.50	11.50
C29516.0	16.00	16.00	63.00	123.0	4	74.50	15.50
C29518.0	18.00	16.00	63.00	123.0	4	74.50	15.50
C29520.0	20.00	20.00	75.00	141.0	4	90.50	19.50
C29525.0	25.00	25.00	90.00	166.0	5	109.50	24.50
C29530.0	30.00	25.00	90.00	166.0	6	109.50	24.50
C29532.0	32.00	32.00	106.00	186.0	6	125.50	31.50
C29540.0 1)	40.00	40.00	125.00	217.0	6	146.50	39.00


 $^{^{1)}}$ Только HSS-E; нет возможности обработки центром фрезы.

Фреза из порошковой быстрорежущей стали с кобальтом удлиненной конструкции

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 40°, уменьшенную шейку и геометрию для фрезерования цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

N1.1 **N1.2 N1.3** N2.1 N2.2 **N2.3** N3.1 N3.2 N3.3 N4.1 N4.2 ■114 E ■86 D ■ 58 D ■ 58 C ■51 C **Z**37 C ■ 60 C ■ 35 C ■ 18 C ■ 60 C **23** C

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C33310.0	10.00	10.00	45.00	95.0	3	54.50	9.50
C33312.0	12.00	12.00	53.00	110.0	3	64.50	11.50
C33314.0	14.00	12.00	53.00	110.0	3	64.50	11.50
C33316.0	16.00	16.00	63.00	123.0	3	74.50	15.50
C33318.0	18.00	16.00	63.00	123.0	3	74.50	15.50
C33320.0	20.00	20.00	75.00	141.0	3	90.50	19.50
C33325.0	25.00	25.00	90.00	166.0	3	109.50	24.50
C33330.0	30.00	25.00	90.00	166.0	3	109.50	24.50

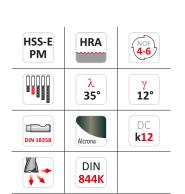
DIN **844K**

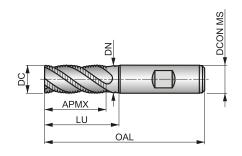
Фреза из порошковой быстрорежущей стали с кобальтом для черновой обработки

Конструкция фрезы имеет угол наклона спирали 35°, стружколомающий профиль HRA и геометрию для фрезерования большинства материалов. Покрытие Alcrona повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
≥ 95 F	■ 84 E	■ 81 F	■ 65 E	■ 55 E	■ 48 E	■41 E	■ 34 E	■ 69 F	■ 58 F	■61 F	■ 50 E	■ 47 E	■ 40 E
M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3
■ 36 D	■ 25 D	■ 60 F	■ 44 F	■33 F	■ 111 F	■ 90 F	■72 E	■98 F	■ 75 F	■61 E	■ 91 E	■ 68 E	■ 50 E
K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■ 43 D	■ 36 D	■ 103 E	■ 77 E	■ 60 E	■ 93 F	■ 55 F	∠ 45 E	■35 E	■15 D	■ 33 D	■ 14 D	■ 25 D	■ 10 D


S4.1 S4.2 ■ 20 D ■ 8 D


DCON MS с допуском h6.							
	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C9226.0	6.00	6.00	13.00	57.0	3	_	_
C9227.0	7.00	10.00	16.00	66.0	3	_	_
C9228.0	8.00	10.00	19.00	69.0	3	_	_
C9229.0	9.00	10.00	19.00	69.0	3	_	_
C92210.0	10.00	10.00	22.00	72.0	3	31.50	9.50
C92211.0	11.00	12.00	22.00	79.0	3	_	_
C92212.0	12.00	12.00	26.00	83.0	3	37.50	11.50
C92213.0	13.00	12.00	26.00	83.0	3	37.50	11.50
C92214.0	14.00	12.00	26.00	83.0	3	37.50	11.50
C92215.0	15.00	12.00	26.00	83.0	3	37.50	11.50
C92216.0	16.00	16.00	32.00	92.0	3	43.50	15.50
C92218.0	18.00	16.00	32.00	92.0	3	43.50	15.50
C92220.0	20.00	20.00	38.00	104.0	3	53.50	19.50
C92222.0	22.00	20.00	38.00	104.0	3	53.50	19.50
C92224.0	24.00	25.00	45.00	121.0	4	64.50	23.50
C92225.0	25.00	25.00	45.00	121.0	4	64.50	24.50
C92228.0	28.00	25.00	45.00	121.0	4	64.50	24.50
C92232.0	32.00	32.00	53.00	133.0	4	72.50	31.50

Фреза из порошковой быстрорежущей стали с кобальтом для черновой обработки

Конструкция фрезы имеет угол наклона спирали 35°, стружколомающий профиль HRA и геометрию для фрезерования большинства материалов. Покрытие Alcrona повышает стойкость и производительность.

■58 E

■ 116 F

■68 F

Z 46 E

■37 E

■ 16 D

■36 D

■16 D

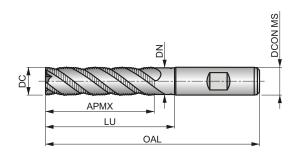
■ 27 D

■11 D

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 M2.1 M2.2 M3.1 M3.2 **≥** 93 F ■ 82 E ■ 80 F ■ 64 E ■ 54 E ■ 48 E ■ 40 E ■33 E ■66 F ■56 F ■ 59 F ■ 48 E ■ 47 E ■ 40 E K3.2 **M3.3** M4.1 K1.1 K1.2 K1.3 **K2.2 K2.3** K3.1 K3.3 K4.1 K4.2 K4.3 ■ 36 D ■ 26 D ■61 F ■ 45 F ■34 F ■ 108 F ■88 F ■70 E ■96 F ■73 F ■ 59 E ■89 E ■ 67 E ■ 49 E **S1.3** K4.4 K4.5 N3.1 N3.2 **S1.1 S1.2 S2.1 S2.2 S3.1 S3.2**

■ 42 D ■ 35 D **S4.1 S4.2** ■ 21 D ■ 9 D ■ 100 E

■76 E


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(мм)	(MM)		(мм)	(MM)
C4286.0	6.00	6.00	13.00	57.0	4	_	_
C4287.0	7.00	10.00	16.00	66.0	4	_	_
C4288.0	8.00	10.00	19.00	69.0	4	_	_
C4289.0	9.00	10.00	19.00	69.0	4	-	_
C42810.0	10.00	10.00	22.00	72.0	4	31.50	9.50
C42811.0	11.00	12.00	22.00	79.0	4	-	_
C42812.0	12.00	12.00	26.00	83.0	4	37.50	11.50
C42813.0	13.00	12.00	26.00	83.0	4	37.50	11.50
C42814.0	14.00	12.00	26.00	83.0	4	37.50	11.50
C42815.0	15.00	12.00	26.00	83.0	4	37.50	11.50
C42816.0	16.00	16.00	32.00	92.0	4	43.50	15.50
C42818.0	18.00	16.00	32.00	92.0	4	43.50	15.50
C42820.0	20.00	20.00	38.00	104.0	4	53.50	19.50
C42822.0	22.00	20.00	38.00	104.0	4	53.50	19.50
C42825.0	25.00	25.00	45.00	121.0	6	64.50	24.50
C42828.0	28.00	25.00	45.00	121.0	6	64.50	24.50
C42830.0	30.00	25.00	45.00	121.0	6	64.50	24.50
C42832.0	32.00	32.00	53.00	133.0	6	72.50	31.50
C42836.0	36.00	32.00	53.00	133.0	6	72.50	31.00
C42840.0	40.00	40.00	63.00	155.0	6	84.50	39.00

Фреза из порошковой быстрорежущей стали с кобальтом для черновой обработки

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 35°, уменьшенную шейку, стружколомающий профиль HRA и геометрию для фрезерования большинства материалов. Покрытие Alcrona повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 83 E	■73 D	■72 E	■ 58 D	■ 49 D	■ 43 D	■37 D	■ 30 D	■ 59 E	■50 E	■53 E	■ 43 D	■ 42 D	■ 36 D
M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3
■ 32 C	■ 23 C	■ 55 E	■ 41 E	■31 E	■97 E	■79 E	■ 63 D	■86 E	■66 E	■ 53 D	■ 80 D	■ 60 D	■ 44 D
K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■38 C	■31 C	■ 90 D	■ 68 D	■52 D	■ 104 E	■61 E	∠ 41 D	■34 D	■ 15 C	■ 32 C	■ 14 C	■ 24 C	■ 10 C
S4.1	\$4.2												

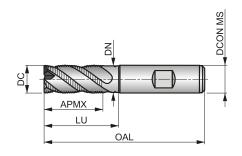
DCON MS с допуском h6.


■ 19 C

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C4926.0	6.00	6.00	24.00	68.0	3	-	_
C4928.0	8.00	10.00	38.00	88.0	3	-	_
C49210.0	10.00	10.00	45.00	95.0	4	54.50	9.50
C49212.0	12.00	12.00	53.00	110.0	4	64.50	11.50
C49214.0	14.00	12.00	53.00	110.0	4	64.50	11.50
C49216.0	16.00	16.00	63.00	123.0	4	74.50	15.50
C49218.0	18.00	16.00	63.00	123.0	4	74.50	15.50
C49220.0	20.00	20.00	75.00	141.0	4	90.50	19.50
C49222.0	22.00	20.00	75.00	141.0	4	90.50	19.50
C49225.0	25.00	25.00	90.00	166.0	6	109.50	24.50
C49230.0	30.00	25.00	90.00	166.0	6	109.50	24.50

Фреза из порошковой быстрорежущей стали с кобальтом для черновой обработки

Конструкция фрезы имеет угол наклона спирали 35°, стружколомающий профиль NRA и геометрию для фрезерования большинства материалов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.


844K

■8 E

■14 E

■6 E

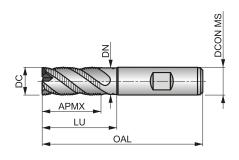
■11 E

■ 5 E

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 ■50 G ■ 56 G ■ 58 G ■ 43 G ■ 38 G ■ 34 F ■ 32 G **26** F **22** F ■ 19 F ■ 16 F **∠** 13 F ■34 G ■29 G M2.2 **K2.2** K3.1 M2.1 M3.1 M3.2 M3.3 M4.1 K1.1 K1.2 K1.3 K2.1 K2.3 K3.2 ■31 G ■ 25 F **Z** 24 F **Z**21 F ■ 19 E ■ 13 E ■ 30 G **22** G ■17 G ■54 G ■ 44 G ■ 35 F ■48 G ■37 G N3.1 K4.1 K4.2 K4.3 K4.4 K5.1 N3.2 **S1.1 S1.2 S1.3** ■ 30 F ■ 44 F ■33 F ■ 25 F ■21 E ■ 18 E ■50 F ■38 F ■29 F ■43 G ■25 G **Z** 30 F ■ 25 F ■ 11 E **S2.2 S2.1 S3.1 S3.2 S4.1 S4.2**

DCON MS с допуском h6	с допуском h6
-----------------------	---------------

■ 19 E

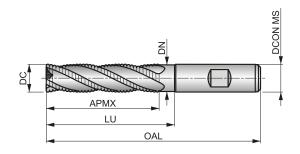

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(мм)	(MM)	(MM)	(MM)		(MM)	(MM)
C4076.0	6.00	6.00	13.00	57.0	4	_	_
C4077.0	7.00	10.00	16.00	66.0	4	_	_
C4078.0	8.00	10.00	19.00	69.0	4	_	_
C4079.0	9.00	10.00	19.00	69.0	4	_	_
C40710.0	10.00	10.00	22.00	72.0	4	31.50	9.50
C40711.0	11.00	12.00	22.00	79.0	4	_	_
C40712.0	12.00	12.00	26.00	83.0	4	37.50	11.50
C40713.0	13.00	12.00	26.00	83.0	4	37.50	11.50
C40714.0	14.00	12.00	26.00	83.0	4	37.50	11.50
C40715.0	15.00	12.00	26.00	83.0	4	37.50	11.50
C40716.0	16.00	16.00	32.00	92.0	4	43.50	15.50
C40718.0	18.00	16.00	32.00	92.0	4	43.50	15.50
C40720.0	20.00	20.00	38.00	104.0	4	53.50	19.50

Фреза из порошковой быстрорежущей стали с кобальтом для черновой обработки

Конструкция фрезы имеет угол наклона спирали 35°, стружколомающий профиль NRA и геометрию для фрезерования большинства материалов. Покрытие Alcrona повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

	17				. ,								
P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■93 G	■ 82 F	■80 G	■ 64 F	■ 54 F	■ 48 F	■ 40 F	Z 33 F	■ 66 G	■ 56 G	■59 G	■48 F	■ 47 F	■ 40 F
M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3
■36 E	■ 26 E	■61 G	■ 45 G	■34 G	■ 108 G	■ 88 G	■70 F	■96 G	■73 G	■ 59 F	■89 F	■67 F	■ 49 F
K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■ 42 E	■ 35 E	■ 100 F	■76 F	■ 58 F	■ 93 G	■ 55 G	∠ 46 F	■37 F	■16 E	■36 E	■ 16 E	■ 27 E	■ 11 E
S/1 1	\$4.2												


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(мм)		(MM)	(мм)
C9086.0	6.00	6.00	13.00	57.0	4	_	-
C9087.0	7.00	10.00	16.00	66.0	4	_	_
C9088.0	8.00	10.00	19.00	69.0	4	_	_
C9089.0	9.00	10.00	19.00	69.0	4	-	-
C90810.0	10.00	10.00	22.00	72.0	4	31.50	9.50
C90811.0	11.00	12.00	22.00	79.0	4	_	_
C90812.0	12.00	12.00	26.00	83.0	4	37.50	11.50
C90813.0	13.00	12.00	26.00	83.0	4	37.50	11.50
C90814.0	14.00	12.00	26.00	83.0	4	37.50	11.50
C90815.0	15.00	12.00	26.00	83.0	4	37.50	11.50
C90816.0	16.00	16.00	32.00	92.0	4	43.50	15.50
C90818.0	18.00	16.00	32.00	92.0	4	43.50	15.50
C90820.0	20.00	20.00	38.00	104.0	4	53.50	19.50
C90822.0	22.00	20.00	38.00	104.0	4	53.50	19.50
C90825.0	25.00	25.00	45.00	121.0	6	64.50	24.50
C90830.0	30.00	25.00	45.00	121.0	6	64.50	24.50
C90832.0	32.00	32.00	53.00	133.0	6	72.50	31.50

Фреза из порошковой быстрорежущей стали с кобальтом для черновой обработки

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 35°, уменьшенную шейку, стружколомающий профиль NRA и геометрию для фрезерования большинства материалов. Покрытие Alcrona повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 M2.1 M2.2 M3.1 M3.2 ■ 83 F **73** E ■ 72 F ■ 58 E ■ 49 E ■ 43 E ■ 37 E ■30 E ■59 F ■ 50 F ■ 53 F ■ 43 E ■ 42 E ■ 36 E K3.2 **M3.3** M4.1 K1.1 K1.2 K1.3 **K2.2 K2.3** K3.1 K3.3 K4.1 K4.2 K4.3 ■ 32 D **23** D ■ 55 F ■ 41 F ■31 F ■ 97 F ■79 F ■63 E ■86 F ■66 F ■ 53 E ■80 E ■ 60 E ■ 44 E K4.4 K4.5 N3.1 N3.2 **S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S3.2** ■38 D ■31 D ■90 E ■68 E ■ 52 E ■83 F ■49 F **Z**41 E ■34 E ■ 15 D ■32 D ■14 D ■ 24 D ■ 10 D

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(мм)	(MM)	(MM)	(MM)		(MM)	(MM)
C9486.0	6.00	6.00	24.00	68.0	4	-	-
C9488.0	8.00	10.00	38.00	88.0	4	-	_
C94810.0	10.00	10.00	45.00	95.0	4	54.50	9.50
C94812.0	12.00	12.00	53.00	110.0	4	64.50	11.50
C94814.0	14.00	12.00	53.00	110.0	4	64.50	11.50
C94816.0	16.00	16.00	63.00	123.0	4	74.50	15.50
C94818.0	18.00	16.00	63.00	123.0	4	74.50	15.50
C94820.0	20.00	20.00	75.00	141.0	4	90.50	19.50
C94825.0	25.00	25.00	90.00	166.0	6	109.50	24.50
C94830.0	30.00	25.00	90.00	166.0	6	109.50	24.50
C94832.0	32.00	32.00	106.00	186.0	6	125.50	31.50

Фреза из быстрорежущей стали с кобальтом для черновой обработки

Конструкция фрезы имеет угол наклона спирали 30°, стружколомающий профиль NF и геометрию для фрезерования мягких сталей и цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C4006.0	6.00	6.00	13.00	57.0	4	-	_
C4008.0	8.00	10.00	19.00	69.0	4	-	_
C40010.0	10.00	10.00	22.00	72.0	4	_	_
C40012.0	12.00	12.00	26.00	83.0	4	-	_
C40014.0	14.00	12.00	26.00	83.0	4	37.50	11.50
C40016.0	16.00	16.00	32.00	92.0	4	43.50	15.50
C40018.0	18.00	16.00	32.00	92.0	4	43.50	15.50
C40020.0	20.00	20.00	38.00	104.0	4	53.50	19.50

K3.2

■ 54 E

N3.1

■86 E

K3.1

■ 71 E

N2.3

■ 52 E

K3.3

■ 44 D

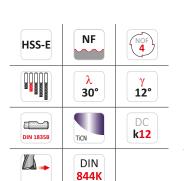
N3.2

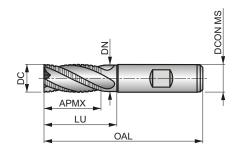
■ 50 E

K4.1

■ 66 D

N3.3

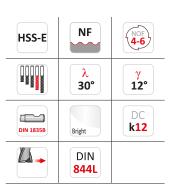

Z 26 E

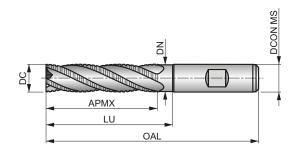

C413

Фреза из быстрорежущей стали с кобальтом для черновой обработки

Конструкция фрезы имеет угол наклона спирали 30°, стружколомающий профиль NF и геометрию для фрезерования большинства материалов. Покрытие TiCN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 ■ 93 E ■ 104 E ■ 108 E ■80 E ■ 70 E **∠**62 D ■ 59 E ■47 D **∠** 40 D ■ 35 D **Z** 30 D **Z** 24 D **∠** 48 E **∠**41 E

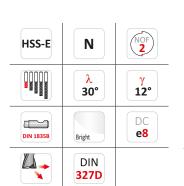

M2.1	M2.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
∠ 43 E	Z 35 D	Z 21 C	Z 20 C	■ 45 E	■33 E	■ 25 E	■80 E	■65 E	■ 52 D
K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.3	N2.1	N2.2
■ 49 D	■36 D	■31 C	■ 26 C	■74 D	■56 D	■43 D	Z 82 F	Z 82 E	■ 74 E
N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2
₹ 186 F	■135 D	■ 30 D	■ 110 C	27 C	114 (■ 20 C	1 10 C	16 C	18 C

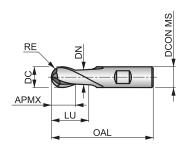

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(мм)
C4136.0	6.00	6.00	13.00	57.0	4	_	-
C4138.0	8.00	10.00	19.00	69.0	4	_	_
C41310.0	10.00	10.00	22.00	72.0	4	_	_
C41312.0	12.00	12.00	26.00	83.0	4	_	_
C41314.0	14.00	12.00	26.00	83.0	4	37.50	11.50
C41316.0	16.00	16.00	32.00	92.0	4	43.50	15.50
C41318.0	18.00	16.00	32.00	92.0	4	43.50	15.50
C41320.0	20.00	20.00	38.00	104.0	4	53.50	19.50

Фреза из быстрорежущей стали с кобальтом удлиненной конструкции для черновой обработки

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 30°, уменьшенную шейку, стружколомающий профиль NF и геометрию для фрезерования преимущественно мягких сталей и цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.


P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 40 D	■ 45 D	■ 46 D	■ 34 D	■ 30 D	Z 28 D	Z 22 C	■ 16 C	Z 27 D	Z 23 D	Z 24 D	Z 20 C	Z 25 D	■ 19 D
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 14 D	∠ 43 D	⊿ 35 D	Z 28 C	Z 38 D	Z 29 D	Z 24 B	⊿ 35 C	Z 27 C	Z 20 C	■ 17 B	■ 14 B	∠ 40 C	Z 30 C
K5.3	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1	S3.1	S4.1
23 C	■ 138 F	■ 138 D	■ 134 D	■ 125 D	■40 D	■ 23 D	■ 112 D	■ 140 D	25 €	20 C	■ 113 R	■ 110 B	■ 18 B


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C40310.0	10.00	10.00	45.00	95.0	4	_	_
C40312.0	12.00	12.00	53.00	110.0	4	_	-
C40314.0	14.00	12.00	53.00	110.0	4	64.50	11.50
C40316.0	16.00	16.00	63.00	123.0	4	74.50	15.50
C40318.0	18.00	16.00	63.00	123.0	4	74.50	15.50
C40320.0	20.00	20.00	75.00	141.0	4	90.50	19.50
C40330.0	30.00	25.00	90.00	166.0	5	109.50	24.50
C40332.0	32.00	32.00	106.00	186.0	6	125.50	31.00
C40336.0	36.00	32.00	106.00	186.0	6	125.50	31.50
C40340.0	40.00	40.00	125.00	217.0	6	146.50	39.00
C40345.0	45.00	40.00	125.00	217.0	6	146.50	39.50
C40350.0	50.00	50.00	150.00	252.0	6	171.50	48.00

Сферическая фреза из быстрорежущей стали с кобальтом

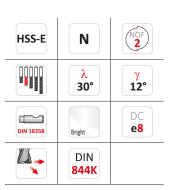
Конструкция фрезы имеет угол наклона спирали 30° для копировального фрезерования преимущественно мягких сталей, цветных и титановых сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

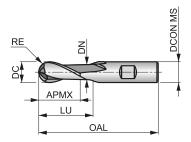
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 53 E	■ 59 E	■61 E	■ 45 E	∠ 40 E	Z 36 E	Z 29 D	Z 22 D	■ 34 E	≥ 29 E	Z 31 E	Z 25 D	Z 30 E	Z 22 E
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 17 E	≥ 55 E	∠ 45 E	Z 36 D	∠ 49 E	⊿ 37 E	Z 30 D	⊿ 45 D	■ 34 D	Z 25 D	Z 22 C	■ 18 C	 ■ 51 D	■ 39 D
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1
≥ 30 D	≥ 95 G	Z 71 F	Z 48 F	∠ 48 E	■ 43 E	Z 31 E	■50 E	■29 E	■ 15 E	Z 50 E	■30 D	Z 25 D	Z 20 C
S3.1	S4.1												

DCON MS с допуском h6; RE ±0.05 мм.

∠12 C


∠15 C


	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(MM)		(мм)	(MM)
C5002.0	2.00	1.00	6.00	4.00	48.0	2	_	-
C5003.0	3.00	1.50	6.00	5.00	49.0	2	_	_
C5004.0	4.00	2.00	6.00	7.00	51.0	2	_	_
C5005.0	5.00	2.50	6.00	8.00	52.0	2	_	-
C5006.0	6.00	3.00	6.00	8.00	52.0	2	-	-
C5007.0	7.00	3.50	10.00	10.00	60.0	2	_	_
C5008.0	8.00	4.00	10.00	11.00	61.0	2	_	_
C5009.0	9.00	4.50	10.00	11.00	61.0	2	_	_
C50010.0	10.00	5.00	10.00	13.00	63.0	2	_	_
C50012.0	12.00	6.00	12.00	16.00	73.0	2	_	_
C50014.0	14.00	7.00	12.00	16.00	73.0	2	27.50	11.50
C50015.0	15.00	7.50	12.00	16.00	73.0	2	27.50	11.50
C50016.0	16.00	8.00	16.00	19.00	79.0	2	30.50	15.50
C50018.0	18.00	9.00	16.00	19.00	79.0	2	30.50	15.50
C50020.0	20.00	10.00	20.00	22.00	88.0	2	37.50	19.50
C50025.0	25.00	12.50	25.00	26.00	102.0	2	45.50	24.50

Сферическая фреза из быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30° для копировального фрезерования преимущественно мягких сталей, цветных и титановых сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

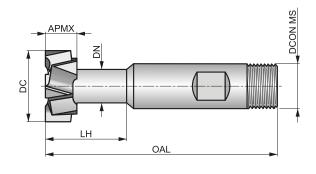
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 46 D	■ 52 D	■ 54 D	■ 40 D	Z 35 D	■ 32 D	Z 26 C	■ 19 C	■ 34 D	Z 29 D	Z 31 D	Z 25 C	Z 30 D	Z 22 D
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 17 D	∠ 49 D	∠ 40 D	⊿ 32 C	■ 44 D	Z 33 D	Z 27 B	■ 40 C	Z 30 C	Z 22 C	■ 19 B	■ 16 B	∠ 46 C	Z 34 C
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1
Z 27 C	≥ 81 F	Z 60 E	∠ 41 E	∠ 41 D	Z 37 D	Z 26 D	■ 43 D	■ 25 D	■13 D	∠ 43 D	■30 C	Z 25 C	Z 20 B
S3.1	\$4.1												

DCON MS с допуском h6; RE ± 0.05 мм.

∠ 12 B

■ 15 B

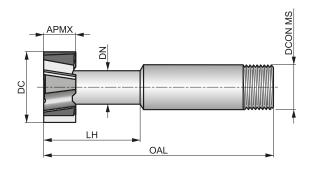

	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(мм)	(MM)	(мм)	(мм)		(MM)	(MM)
C5053.0	3.00	1.50	6.00	8.00	52.0	2	-	-
C5054.0	4.00	2.00	6.00	11.00	55.0	2	_	_
C5055.0	5.00	2.50	6.00	13.00	57.0	2	_	_
C5056.0	6.00	3.00	6.00	13.00	57.0	2	_	_
C5058.0	8.00	4.00	10.00	19.00	69.0	2	_	_
C50510.0	10.00	5.00	10.00	22.00	72.0	2	_	_
C50512.0	12.00	6.00	12.00	26.00	83.0	2	_	_
C50514.0	14.00	7.00	12.00	26.00	83.0	2	37.50	11.50
C50516.0	16.00	8.00	16.00	32.00	92.0	2	43.50	15.50
C50520.0	20.00	10.00	20.00	38.00	104.0	2	53.50	19.50
C50522.0	22.00	11.00	20.00	38.00	104.0	2	53.50	19.50
C50525.0	25.00	12.50	25.00	45.00	121.0	2	64.50	24.50
C50528.0	28.00	14.00	25.00	45.00	121.0	2	64.50	24.50
C50530.0	30.00	15.00	25.00	45.00	121.0	2	64.50	24.50

Фреза из быстрорежущей стали с кобальтом для обработки Т-образного паза

Конструкция фрезы для обработки Т-образного паза имеет резьбовой хвостовик для надежного закрепления инструмента. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

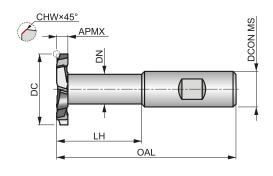
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 40 V	■ 45 V	■46 V	■34 V	■30 U	■27T	■ 29 U	■ 24 U	■ 20 T	■ 18 U	■ 15 T	■12T	■ 27 S	23 S
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 24 S	■ 20 S	■17 S	■15 S	■14 S	■ 10 S	■ 20 V	■ 15 V	■11 V	■37 U	■30 U	■ 24 U	■33 U	■25 U
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■20 U	■ 30 S	■ 23 S	■17 S	■14 S	■ 12 S	■ 34 U	■ 26 U	■ 20 U	■ 71 Y	■ 53 Y	■36 Y	■36 Y	■32 Y
N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2
■ 23 Y	■38 V	■22 V	■ 11 W	■38 Y	■ 30 V	■ 20 V	■ 10 U	■13 U	■7T	■ 10 U	■5T	■8 U	■4T


/								
	APMX	DC	T DIN650	DN	LH	OAL	DCON MS	NOF
	(MM)	(MM)		(MM)	(MM)	(MM)	(MM)	
C80011.0X5.0	4.00	11.00	5	4.00	10.5	53.5	10.00	6
C80012.5X6.0	6.00	12.50	6	5.00	15.0	57.0	10.00	6
C80016.0X8.0	8.00	16.00	8	7.00	20.0	62.0	10.00	6
C80018.0X10.0	8.00	18.00	10	8.00	23.0	70.0	12.00	6
C80021.0X12.0	9.00	21.00	12	10.00	27.0	74.0	12.00	8
C80025.0X14.0	11.00	25.00	14	12.00	31.0	82.0	16.00	8
C80032.0X18.0	14.00	32.00	18	15.00	40.0	90.0	16.00	8
C80040.0X22.0	18.00	40.00	22	19.00	45.0	108.0	25.00	8
C80050.0X28.0	22.00	50.00	28	25.00	56.0	124.0	32.00	8

Фреза из быстрорежущей стали для обработки Т-образного паза

Конструкция фрезы для обработки Т-образного паза имеет резьбовой хвостовик для надежного закрепления инструмента. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.


P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 27 V	■30 V	■31 V	■ 23 V	■ 20 U	■ 18T	■15 U	■12 U	■ 10T	■9U	 7 T	 6T	■ 21 S	■ 17 S
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 18 S	■ 15 S	■ 12 S	■ 10 S	 ■ 9 S	■ 10 S	■ 20 V	■ 15 V	■ 11 V	■ 25 U	■ 20 U	■ 16 U	■ 22 U	■ 17 U
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 13 U	■ 20 S	■ 15 S	■ 11 S	■ 10 S	8 8	■23 U	■17 U	■ 13 U	■ 48 Y	■36 Y	■ 24 Y	■ 24 Y	■ 22 Y
N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2
■16 Y	■26 V	■15 V	■8 W	■ 126 Y	■20 V	■ 15 V	■ 15 U	■ 17 U	■ 17T	■ 15 U	■ 15T	■ 14 U	■ 14T

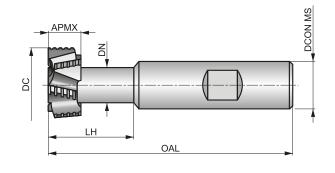
DCON MS с допуском 0/-0.025 мм.

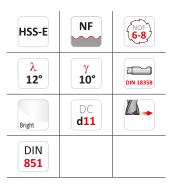
	APMX	APMX	DC	DC	T DIN650	DN	LH	OAL	DCONMS	DCON MS	NOF
	(дюйм)	(мм)	(дюйм)	(MM)		(MM)	(MM)	(MM)	(дюйм)	(MM)	
C8106.0	_	6.00	_	12.50	6.0	5.00	17.0	57.0	_	10.00	6
C8108.0	_	8.00	_	16.00	8.0	7.00	21.0	61.0	_	10.00	6
C81010.0	_	8.00	_	18.00	10.0	8.00	25.0	65.0	_	12.00	6
C81012.0	_	9.00	_	21.00	12.0	10.00	29.0	69.0	_	12.00	6
C81014.0	_	11.00	_	25.00	14.0	12.00	34.0	79.0	_	16.00	6
C81016.0	_	12.00	_	28.00	16.0	13.00	35.0	76.0	-	16.00	6
C81018.0	_	14.00	_	32.00	18.0	15.00	41.0	98.0	_	25.00	8
C81020.0	_	16.00	_	36.00	20.0	17.00	46.0	100.0	_	25.00	8
C81022.0	_	18.00	_	40.00	22.0	19.00	51.0	108.0	_	25.00	8

Фреза из быстрорежущей стали с кобальтом для обработки Т-образного паза с фаской

Конструкция фрезы для обработки Т-образного паза. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 **40** V 45 V ■46 V ■34 V ■30 U ■27 T **22** U ■ 18 U ■ 15 T ■ 13 U ■11T ■9T **21** S ■ 17 S

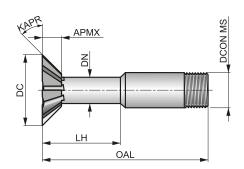

K2.1 M2.1 **M2.2** M3.1 M3.2 M3.3 M4.1 **K1.1 K1.2** K1.3 K2.2 K2.3 K3.1 K3.2 **■** 18 S ■ 15 S **■**12 S **■**10 S **9**5 **■**10 S ■ 25 V ■19 V ■ 14 V ■ 37 U ■ 30 U ■ 24 U ■33 U ■ 25 U N1.1 N1.2 N1.3 N2.1 K4.1 K4.2 K4.3 K4.4 **N2.2** ■ 20 U **■**30 S **23** S **■**17 S ■ 14 S **■** 12 S ■34 U ■ 26 U ■ 20 U ■71 Y ■ 53 Y ■36 Y ■36 Y ■32 Y N3.1 N3.2 **N2.3** N3.3 N4.1 **S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2 23** Y 38 V 22 V 11 W ■38 Y 35 V 20 V ■ 10 U ■7 U **■**7T ■5 U ■5T 4 U **4**T


	APMX	DC	CHW	DN	LH	OAL	DCON MS	NOF
	(MM)	(мм)	(MM)	(MM)	(MM)	(мм)	(MM)	
C8253.0X40.0	3.00	40.00	0.15	19.20	49.0	100.0	20.00	8
C8254.0X40.0	4.00	40.00	0.15	19.20	49.0	100.0	20.00	8
C8255.0X40.0	5.00	40.00	0.15	19.20	49.0	100.0	20.00	8
C8256.0X40.0	6.00	40.00	0.15	19.20	49.0	100.0	20.00	8
C8258.0X40.0	8.00	40.00	0.15	19.20	49.0	100.0	20.00	8
C82510.0X40.0	10.00	40.00	0.15	19.20	49.0	100.0	20.00	8
C8256.0X63.0	6.00	63.00	0.15	24.20	73.0	130.0	25.00	12
C8258.0X63.0	8.00	63.00	0.15	24.20	73.0	130.0	25.00	12
C82510.0X63.0	10.00	63.00	0.15	24.20	73.0	130.0	25.00	12
C82512.0X63.0	12.00	63.00	0.15	24.20	73.0	130.0	25.00	12
C82514.0X63.0	14.00	63.00	0.15	24.20	73.0	130.0	25.00	12
C82516.0X63.0	16.00	63.00	0.15	24.20	73.0	130.0	25.00	12

Фреза из быстрорежущей стали с кобальтом для черновой обработки Т-образного паза

Конструкция фрезы для черновой обработки Т-образного паза. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.


P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 40 V	■ 45 V	■ 46 V	■34 V	■30 U	■27 T	■29 U	■24 U	■20T	■ 18 U	■ 15 T	■12T	■ 34 S	■ 29 S
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 31 S	■ 25 S	■ 17 S	■ 15 S	■ 14 S	■15 S	■ 25 V	■ 19 V	■ 14 V	■ 43 U	■35 U	■ 28 U	■38 U	■ 29 U
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 24 U	■35 S	■ 27 S	■ 20 S	■ 17 S	■ 14 S	■40 U	■30 U	■ 23 U	■71 Y	■53 Y	■ 36 Y	■ 36 Y	■32 Y
N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2
■ 23 Y	■38 V	■22 V	■11 W	■38 Y	■30 V	■20 V	■10 U	■13 U	■7T	■ 10 U	■5T	■8 U	■4T

	APMX	DC	T DIN650	DN	LH	OAL	DCON MS	NOF
	(MM)	(MM)		(MM)	(MM)	(MM)	(мм)	
C80116.0X8.0	8.00	16.00	8	7.00	18.0	62.0	10.00	6
C80118.0X10.0	8.00	18.00	10	8.00	21.0	70.0	12.00	6
C80121.0X12.0	9.00	21.00	12	10.00	25.0	74.0	12.00	6
C80125.0X14.0	11.00	25.00	14	12.00	28.0	82.0	16.00	8
C80132.0X18.0	14.00	32.00	18	15.00	36.0	90.0	16.00	8

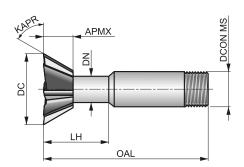
Фреза из быстрорежущей стали для обработки паза типа "ласточкин хвост"

Конструкция фрезы имеет угол 45° для обработки стандартного паза типа "ласточкин хвост" и резьбовой хвостовик для надежного закрепления инструмента. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применени	е инструмента, начальны	не значения скорости ре	зания (м/мин) и	индекс подачи. П	одача и поправочны	е коэффициенть	определяются	по таблицам, на	чиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
20 Y	■ 22 Y	■ 23 Y	■ 17 Y	■ 15 X	∠ 13 X	■ 15 X	■ 12 X	■ 10 X	■9 X	 7 X	∠ 6X	■ 14 W	■ 12 W
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■12 W	■10 W	∠ 12 W	■ 10 W	∠ 9W	 5 W	■15 Y	■11 Y	■8Y	■18 X	■ 15 X	■12 X	■16 X	■ 12 X
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 10 X	■15 W	■11 W	■8W	■7 W	■6 W	■ 17 X	■ 13 X	■ 10 X	■ 36 Z	■ 27 Z	■ 18 Z	■ 18 Z	■ 16 Z
N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2
■ 12 Z	■19 Y	■11 Y	■ 6Z	■ 19 Z	■ 15 Y	■ 10 Y	 5 X	∠ 7W	∠ 7W	 ■ 5 W	 ■ 5 W	∠ 4W	■ 4W

DCON MS с допуском 0/-0.025 мм.


	KAPR	APMX	DC	DC	DN	LH	OAL	DCONMS	DCON MS	NOF
	(°)	(MM)	(дюйм)	(MM)	(MM)	(MM)	(MM)	(дюйм)	(MM)	
C83713.0	45	3.00	-	13.00	4.75	19.5	63.5	_	12.00	6
C8375/8 1)	45	4.00	5/8	15.88	6.35	21.5	66.5	1/2	12.70	6
C83716.0	45	4.00	_	16.00	6.35	21.5	66.5	_	12.00	6
C83719.0	45	5.50	-	19.00	6.35	21.5	66.5	_	12.00	6
C8373/4 1)	45	5.50	3/4	19.05	6.35	21.5	66.5	1/2	12.70	6
C83722.0	45	6.50	-	22.00	7.15	22.5	68.5	_	12.00	6
C8377/8 1)	45	6.50	7/8	22.23	7.15	22.5	68.5	1/2	12.70	6
C83725.0	45	7.50	-	25.00	7.95	24.0	70.0	_	12.00	6
C8371 1)	45	8.00	1″	25.40	7.95	24.0	70.0	1/2	12.70	6
C83728.0	45	8.50	-	28.00	9.55	25.5	71.5	_	16.00	6
C83738.0	45	10.50	_	38.00	12.70	26.5	78.5	_	25.00	8

¹⁾ Стандарт BS 122/4.

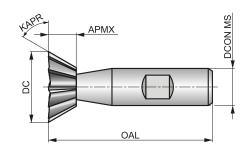
Фреза из быстрорежущей стали для обработки паза типа "ласточкин хвост"

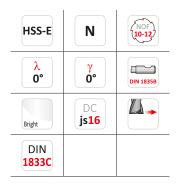
Конструкция фрезы имеет угол 60° для обработки стандартного паза типа "ласточкин хвост" и резьбовой хвостовик для надежного закрепления инструмента. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Γ	Применение инструмента, начальные значения скорс	ости резания (м/мин	і) и индекс подачи. Под	дача и поправочные коэффициенты оп	ределяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 20 Y	■ 22 Y	■ 23 Y	■ 17 Y	■15 X	∠ 13 X	■ 15 X	■ 12 X	■ 10 X	■ 9 X	Z 7X	∠ 6 X	■ 14 W	■ 12 W
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■12 W	■ 10 W	■ 12 W	∠ 10 W	∠ 9W	∠ 5W	■15 Y	■11 Y	■8 Y	■18 X	■ 15 X	■ 12 X	■16 X	■12 X
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 10 X	■ 15 W	■11 W	■8 W	■ 7 W	■6W	■ 17 X	■ 13 X	■ 10 X	■36 Z	■27 Z	■ 18 Z	■ 18 Z	■ 16 Z
N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2
■ 12 Z	■19 Y	■11 Y	■ 6 Z	■ 19 Z	■ 15 Y	■ 10 Y	 5 X	Z 7W	Z 7W	≥ 5 W	 5 W	■ 4W	■ 4W

DCON MS с допуском 0/-0.025 мм.


	KAPR	APMX	DC	DC	DN	LH	OAL	DCONMS	DCON MS	NOF
	(°)	(мм)	(дюйм)	(мм)	(мм)	(мм)	(мм)	(дюйм)	(MM)	
C8351/2 1)	60	4.00	1/2	12.70	7.15	20.5	63.5	1/2	12.70	6
C83513.0	60	4.00	_	13.00	7.15	20.5	63.5	_	12.00	6
C8355/8 1)	60	5.50	5/8	15.88	7.55	23.5	66.5	1/2	12.70	6
C83516.0	60	5.50	-	16.00	7.55	23.5	66.5	_	12.00	6
C83519.0	60	7.00	-	19.00	8.35	24.5	67.5	-	12.00	6
C8353/4 1)	60	7.00	3/4	19.05	8.35	24.5	67.5	1/2	12.70	6
C83522.0	60	9.50	-	22.00	8.75	24.5	67.5	_	12.00	6
C8357/8 1)	60	9.50	7/8	22.23	8.75	24.5	67.5	1/2	12.70	6
C83525.0	60	12.00	-	25.00	8.75	27.0	70.0	-	12.00	6
C8351 1)	60	12.00	1"	25.40	8.75	27.0	70.0	1/2	12.70	6
C83528.0	60	12.50	-	28.00	11.10	28.0	73.0	_	16.00	6
C8351.1/8 1)	60	12.50	1.1/8	28.58	11.10	28.0	73.0	5/8	15.88	6
C83532.0	60	13.50	-	32.00	12.70	29.5	74.5	-	16.00	8
C8351.1/4 1)	60	13.50	1.1/4	31.75	12.70	29.5	74.5	5/8	15.88	8
C8351.3/8 1)	60	14.50	1.3/8	34.93	12.70	30.5	82.5	1″	25.40	8
C83535.0	60	14.50	_	35.00	12.70	30.5	82.5	-	25.00	8
C83538.0	60	16.00	_	38.00	17.45	32.0	84.0	-	25.00	8
C8351.1/2 1)	60	16.00	1.1/2	38.10	17.45	32.0	84.0	1″	25.40	8

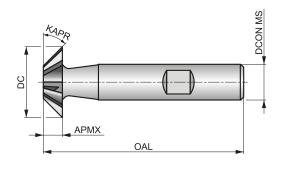

¹⁾ Стандарт BS 122/4.

Фреза из быстрорежущей стали с кобальтом для обработки паза типа "ласточкин хвост"

Конструкция фрезы имеет угол 45° или 60° для обработки стандартного паза типа "ласточкин хвост". Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

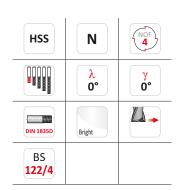
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 33 Y	■37 Y	■38 Y	■ 28 Y	■ 25 X	22 X	22 X	■ 18 X	■ 15 X	■13 X	■11 X	■9 X	■ 27 W	23 W
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 24 W	■20 W	■17 W	■ 15 W	■14 W	■10 W	■20 Y	■15 Y	■11 Y	■31 X	■ 25 X	■ 20 X	■ 27 X	■21 X
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 17 X	■25 W	■19W	■ 14 W	■12 W	■10 W	■ 29 X	■21 X	■ 17 X	■ 59 Z	■ 44 Z	■ 30 Z	■ 30 Z	■ 27 Z
N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2
■ 19 Z	■31 Y	■18 Y	■9Z	■31 Z	■ 25 Y	■15 Y	■10 X	■ 13 W	■7 W	■ 10 W	■5 W	■8W	■4 W

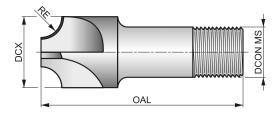

	KAPR	APMX	DC	OAL	DCON MS	NOF
	(°)	(MM)	(мм)	(MM)	(MM)	
C83012.0X45	45	3.50	12.00	54.0	10.00	10
C83016.0X45	45	4.00	16.00	60.0	12.00	10
C83020.0X45	45	5.00	20.00	63.0	12.00	10
C83025.0X45	45	6.30	25.00	67.0	12.00	10
C83032.0X45	45	8.00	32.00	71.0	16.00	12
C83012.0X60	60	5.00	12.00	54.0	10.00	10
C83016.0X60	60	6.30	16.00	60.0	12.00	10
C83020.0X60	60	8.00	20.00	63.0	12.00	10
C83025.0X60	60	10.00	25.00	67.0	12.00	10
C83032.0X60	60	12.50	32.00	71.0	16.00	12

Фреза из быстрорежущей стали с кобальтом для обработки паза обратный "ласточкин хвост"

Конструкция фрезы имеет угол 45° или 60° для обработки стандартного паза типа обратный "ласточкин хвост". Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

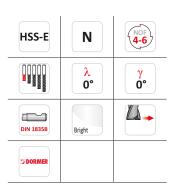

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 33 Y	■37 Y	■38 Y	■ 28 Y	■ 25 X	■ 22 X	■ 22 X	■ 18 X	■ 15 X	■ 13 X	■11 X	■ 9 X	■ 27 W	■ 23 W
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■24 W	■ 20 W	■ 17 W	■15 W	■14W	■10 W	■20 Y	■ 15 Y	■11 Y	■31 X	■ 25 X	■ 20 X	■ 27 X	■21 X
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 17 X	■ 25 W	■19 W	■14W	■12 W	■ 10 W	■ 29 X	■ 21 X	■ 17 X	■59 Z	■ 44 Z	■ 30 Z	■ 30 Z	■ 27 Z
N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2
■ 19 Z	■31 Y	■18 Y	■ 9 Z	■31 Z	■ 25 Y	■15 Y	■ 10 X	■13 W	■7W	■ 10 W	■5 W	■8W	■4W

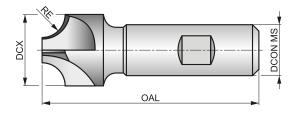

	KAPR	APMX	DC	OAL	DCON MS	NOF
	(°)	(MM)	(MM)	(мм)	(MM)	
C83112.0X45	45	3.50	12.00	54.0	10.00	10
C83116.0X45	45	4.00	16.00	60.0	12.00	10
C83120.0X45	45	5.00	20.00	63.0	12.00	10
C83125.0X45	45	6.30	25.00	67.0	12.00	10
C83132.0X45	45	8.00	32.00	71.0	16.00	12
C83112.0X60	60	5.00	12.00	54.0	10.00	10
C83116.0X60	60	6.30	16.00	60.0	12.00	10
C83120.0X60	60	8.00	20.00	63.0	12.00	10
C83125.0X60	60	10.00	25.00	67.0	12.00	10
C83132.0X60	60	12.50	32.00	71.0	16.00	12

Фреза из быстрорежущей стали для обработки скругления

Конструкция фрезы для обработки скругления имеет резьбовой хвостовик для надежного закрепления инструмента. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

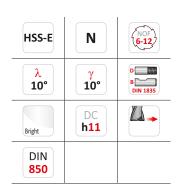
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

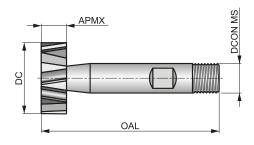

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 20 W	22 W	■ 23 W	■ 17 W	■15 W	■ 13 W	■ 15 W	■ 12 W	∠ 10 W	■ 9W	∠ 7W	∠ 6W	■21 U	■ 17 U
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■18 U	■ 15 U	■ 12 U	■10 U	∠ 9U	 ■ 5 U	■ 20 W	■ 15 W	■ 11 W	■18 W	■ 15 W	■12 W	■16 W	■ 12 W
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 10 W	■ 15 U	■11 U	■8 U	■7 U	■6 U	■ 17 W	■ 13 W	■ 10 W	■36 X	■ 27 X	■18 X	■18 X	■ 16 X
N2.3	N3.1	N3.2	N3.3	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2	
12 X	■19 X	■11 X	■6 X	■15 U	■10 U	 5 U	■7 U	 7 U	■5 U	 5 U	■ 4 U	∠ 4U	


	RE	DCX	DCONMS	DCON MS	OAL	NOF
	(дюйм)	(дюйм)	(дюйм)	(MM)	(MM)	
C7101/16	1/16	3/8	3/8	9.53	60.5	4
C7101/8	1/8	1/2	1/2	12.70	60.5	4
C7105/32	5/32	9/16	1/2	12.70	60.5	4
C7103/16	3/16	5/8	5/8	15.88	60.5	4
C7101/4	1/4	7/8	5/8	15.88	63.5	4
C7103/8	3/8	1.1/16	1″	25.40	76.0	4
C7101/2	1/2	1.3/8	1″	25.40	82.5	4

Фреза из быстрорежущей стали с кобальтом для обработки скругления

Конструкция фрезы для обработки скругления. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.


Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.


P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■33 W	■ 37 W	■38 W	■28 W	■25 W	22 W	22 W	■18 W	■15 W	■ 13 W	■ 11 W	■ 9W	■ 27 U	■ 23 U
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 24 U	■ 20 U	■17 U	■15 U	■14 U	■ 10 U	■20 W	■15 W	■11W	■31W	■ 25 W	■ 20 W	■ 27 W	■ 21 W
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 17 W	■ 25 U	■19 U	■14 U	■12 U	■10 U	■29 W	■21 W	■17 W	■ 57 X	■ 43 X	■ 29 X	■29 X	■ 26 X
N2.3	N3.1	N3.2	N3.3	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2	
■19 X	■ 30 X	■ 17 X	■9 X	■25 U	■ 20 U	■10 U	■13 U	■7 U	■ 10 U	■5 U	■ 8U	■4 U	

	RE	DCX	DCON MS	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
C7001.0	1.00	10.00	10.00	60.0	4
C7001.5	1.50	10.00	10.00	60.0	4
C7002.0	2.00	10.00	10.00	60.0	4
C7002.5	2.50	10.00	10.00	60.0	4
C7003.0	3.00	12.00	12.00	60.0	4
C7003.5	3.50	12.00	12.00	60.0	4
C7004.0	4.00	15.00	12.00	60.0	4
C7005.0	5.00	18.00	16.00	70.0	4
C7006.0	6.00	21.00	16.00	70.0	4
C7007.0	7.00	24.00	16.00	70.0	4
C7008.0	8.00	24.00	16.00	70.0	4
C7009.0	9.00	28.00	20.00	85.0	4
C70010.0	10.00	28.00	20.00	85.0	4
C70012.0	12.00	35.00	20.00	100.0	4
C70012.5	12.50	35.00	20.00	100.0	4
C70014.0	14.00	42.00	25.00	100.0	4
C70015.0	15.00	48.00	25.00	105.0	5
C70016.0	16.00	48.00	25.00	105.0	5
C70020.0	20.00	60.00	32.00	115.0	6

Фреза из быстрорежущей стали с кобальтом для обработки паза под сегментную шпонку

Конструкция фрезы для обработки паза под сегментную шпонку имеет резьбовой хвостовик для надежного закрепления инструмента. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

30 V

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 **40** V 45 V ■46 V ■34 V ■30 U ■27 T ■ 29 U **24** U **20** T ■ 18 U ■ 15 T ■ 12 T ■34 S ■ 29 S M2.2 K2.1 M2.1 M3.1 M3.2 M3.3 M4.1 K1.1 K1.2 K1.3 K2.2 K2.3 K3.1 K3.2 **■**31 S **25** S **■**17 S ■15 S **■**14 S ■15 S ■ 25 V ■19 V ■ 14 V ■ 37 U ■ 30 U ■ 24 U ■33 U ■ 25 U N1.1 N1.2 N1.3 N2.1 K4.1 K4.2 K4.3 K4.4 K5.1 **N2.2** ■ 20 U **■**30 S **23** S **■** 17 S ■ 14 S **■** 12 S ■34 U ■ 26 U ■ 20 U ■ 71 Y ■ 53 Y ■36 Y ■36 Y ■32 Y N3.1 N3.2 **N2.3** N3.3 N4.1 **S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2**

■ 10 U

■ 13 U

■7T

■ 10 U

■5T

■8 U

4T

20 V

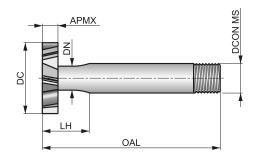
DCON MS с допуском h6.

38 V

22 V

■ 11 W

■38 Y


23 Y

	APMX	DC	OAL	DCON MS	NOF
	(MM)	(MM)	(мм)	(MM)	
C8224.5X1.0	1.00	4.50	50.0	6.00	6
C8227.5X1.5	1.50	7.50	50.0	6.00	6
C8227.5X2.0	2.00	7.50	50.0	6.00	6
C82210.5X2.0	2.00	10.50	50.0	6.00	8
C82210.5X2.5	2.50	10.50	50.0	6.00	8
C82210.5X3.0	3.00	10.50	50.0	6.00	8
C82213.5X3.0	3.00	13.50	56.0	10.00	8
C82213.5X4.0	4.00	13.50	56.0	10.00	8
C82216.5X3.0	3.00	16.50	56.0	10.00	8
C82216.5X4.0	4.00	16.50	56.0	10.00	8
C82216.5X5.0	5.00	16.50	56.0	10.00	8
(82219.5X3.0	3.00	19.50	63.0	10.00	10
C82219.5X4.0	4.00	19.50	63.0	10.00	10
C82219.5X5.0	5.00	19.50	63.0	10.00	10
C82222.5X5.0	5.00	22.50	63.0	10.00	10
C82222.5X6.0	6.00	22.50	63.0	10.00	10
C82222.5X8.0	8.00	22.50	63.0	10.00	10
C82225.5X6.0	6.00	25.50	63.0	10.00	12
C82228.5X6.0	6.00	28.50	63.0	10.00	12
C82228.5X8.0	8.00	28.50	63.0	10.00	12
C82228.5X10.0	10.00	28.50	71.0	12.00	12
C82232.5X8.0	8.00	32.50	71.0	12.00	12
C82232.5X10.0	10.00	32.50	71.0	12.00	12
C82245.5X10.0	10.00	45.50	71.0	12.00	12

Фреза из быстрорежущей стали для обработки паза под сегментную шпонку

Конструкция фрезы для обработки паза под сегментную шпонку имеет резьбовой хвостовик для надежного закрепления инструмента. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

4.00

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P1.1 P2.1 P4.3 M1.1 M1.2 **27 V 30 V 31V 23** V 20 U **■**18T ■15 U ■12 U **■**10T ■9 U **Z**7T **Z**6T **21** S ■ 17 S M2.1 **M2.2** M3.1 M3.2 M3.3 M4.1 K1.1 **K1.2** K1.3 K2.1 K2.2 K2.3 K3.1 K3.2 **■** 18 S ■ 15 S ■ 12 S **■** 10 S **Z**9S **■**10 S **20 V** ■ 15 V ■ 11 V ■ 25 U ■ 20 U ■16 U ■ 22 U ■ 17 U K3.3 K4.1 K4.3 K4.4 K4.5 **N1.1 N1.2** N1.3 **N2.1** N2.2 ■13 U **■** 20 S ■ 15 S **■** 11 S **■**10 S **8**8 ■23 U ■ 17 U ■ 13 U ■48 Y ■36 Y **24** Y ■ 24 Y **22** Y **N2.3** N3.1 N3.3 N3.2 N4.1 **S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2** ■ 16 Y ■26 V 15 V **8** W **Z**26 Y **20** V **∠** 15 V **■**10 U **Z**7U **Z**7T **Z**5 U 5T **■**4U **∠**4T

	DNMS DCON MS 1000m (MM)	NOF 6
(дойм) (мм) (дойм) (мм) (мм)	дюйм) (мм) — 12.00	
C82010.5X2.0 2.00 - 10.50 3.90 12.0 57.0	- 12.00	6
C82010.5X2.0 2.00 - 10.50 3.90 12.0 57.0	- 12.00	6
		6
C82010.5X2.5 2.50 - 10.50 3.90 12.5 57.0	- 12.00	
		6
C82010.5X3.0 3.00 - 10.50 4.20 13.0 57.0	- 12.00	6
C820204 ¹⁾ 204 1/16 1.59 1/2 12.70 3.30 11.6 57.0	1/2 12.70	6
C820404 ¹⁾ 404 1/8 3.18 1/2 12.70 4.85 13.2 57.0	1/2 12.70	6
C82013.5X2.0 2.00 - 13.50 4.00 12.0 57.0	- 12.00	6
C82013.5X2.5 2.50 - 13.50 4.00 12.5 57.0	- 12.00	6
C82013.5X3.0 3.00 - 13.50 5.00 13.0 57.0	- 12.00	6
C82013.5X4.0 4.00 - 13.50 5.00 14.0 57.0	- 12.00	6
(820405 1) 405 1/8 3.18 5/8 15.88 5.65 13.2 57.0	1/2 12.70	6
C820505 ¹⁾ 505 5/32 3.97 5/8 15.88 6.35 14.0 57.0	1/2 12.70	6
C82016.5X2.5 2.50 - 16.50 4.00 12.5 57.0	- 12.00	6
C82016.5X3.0 3.00 - 16.50 5.00 13.0 57.0	- 12.00	6
C82016.5X4.0 4.00 - 16.50 5.00 14.0 57.0	- 12.00	6
C82016.5X5.0 5.00 - 16.50 5.60 15.0 57.0	- 12.00	6
C820406 1) 406 1/8 3.18 3/4 19.05 5.50 13.2 57.0	1/2 12.70	6
C820506 ¹⁾ 506 5/32 3.97 3/4 19.05 6.35 14.0 57.0	1/2 12.70	6
C820606 1) 606 3/16 4.76 3/4 19.05 7.15 14.8 57.0	1/2 12.70	6
C82019.5X3.0 3.00 - 19.50 5.60 13.0 57.0	- 12.00	6
C82019.5X4.0 4.00 - 19.50 5.60 14.0 57.0	- 12.00	6
C82019.5X5.0 5.00 - 19.50 6.00 15.0 57.0	- 12.00	6
(820507 ¹⁾ 507 5/32 3.97 7/8 22.23 6.35 14.0 63.5	1/2 12.70	8
(820607 ¹⁾ 607 3/16 4.76 7/8 22.23 7.15 14.8 63.5	1/2 12.70	8
C820807 ¹⁾ 807 1/4 6.35 7/8 22.23 8.75 16.4 63.5	1/2 12.00	8

22.50

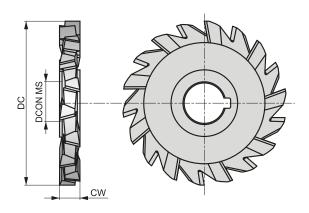
5.60

14.0

63.5

12.00

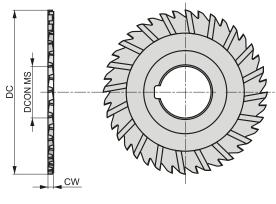
C82022.5X4.0


	Nr.	APMX	APMX	DC	DC	DN	LH	OAL	DCONMS	DCON MS	NOF
		(дюйм)	(MM)	(дюйм)	(MM)	(MM)	(MM)	(MM)	(дюйм)	(мм)	
C82022.5X5.0	_	-	5.00	-	22.50	6.00	15.0	63.5	_	12.00	8
C82022.5X6.0	-	_	6.00	_	22.50	6.50	16.0	63.5	-	12.00	8
C820608 1)	608	3/16	4.76	1″	25.40	7.15	14.8	70.0	1/2	12.70	8
C820808 1)	808	1/4	6.35	1″	25.40	8.75	16.4	70.0	1/2	12.70	8
C82025.5X5.0	-	-	5.00	-	25.50	7.50	15.0	70.0	-	12.00	8
C82025.5X6.0	-	-	6.00	-	25.50	7.50	16.0	70.0	-	12.00	8
C82025.5X8.0	_	_	8.00	_	25.50	8.00	18.0	70.0	_	12.00	8
C82028.5X5.0	_	_	5.00	_	28.50	8.00	17.0	70.0	-	12.00	8
C82028.5X6.0	-	-	6.00	-	28.50	8.50	18.0	70.0	-	12.00	8
C82028.5X8.0	_	-	8.00	_	28.50	9.00	20.0	70.0	_	12.00	8
C820610 1)	610	3/16	4.76	1.1/4	31.75	7.95	16.8	70.0	1/2	12.70	10
C820810 1)	810	1/4	6.35	1.1/4	31.75	9.50	18.4	70.0	1/2	12.70	10
C8201210 1)	1210	3/8	9.53	1.1/4	31.75	11.95	21.5	70.0	1/2	12.70	10
C82032.5X5.0 1)	_	_	5.00	_	32.50	8.00	17.0	70.0	-	12.00	10
C82032.5X6.0	_	_	6.00	_	32.50	8.50	18.0	70.0	_	12.00	10
C82032.5X8.0	_	_	8.00	_	32.50	9.00	20.0	70.0	_	12.00	10
C820811 1)	811	1/4	6.35	1.3/8	34.93	11.10	26.4	76.0	1/2	12.70	10
C8201211 1)	1211	3/8	9.53	1.3/8	34.93	11.95	29.5	76.0	1/2	12.70	10
C82035.5X6.0	_	_	6.00	_	35.50	9.50	26.0	76.0	_	12.00	10
C82035.5X8.0	_	_	8.00	_	35.50	11.50	28.0	76.0	_	12.00	10
C820812 1)	812	1/4	6.35	1.1/2	38.10	11.10	26.4	76.0	1/2	12.70	10
C8201212 1)	1212	3/8	9.53	1.1/2	38.10	11.95	29.5	76.0	1/2	12.70	10
C82038.5X8.0	_	_	8.00	_	38.50	11.50	28.0	76.0	_	12.00	10
C82038.5X10.0	_	_	10.00	_	38.50	11.50	30.0	76.0	_	12.00	10
C82045.5X10.0	-	-	10.00	-	45.50	11.50	30.0	76.0	-	12.00	12

¹⁾ Стандарт BS 122/4.

Дисковая фреза из быстрорежущей стали с кобальтом

Конструкция фрезы имеет крупный шаг зубьев с трехсторонней геометрией для обработки глубоких пазов или отрезки заготовок. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

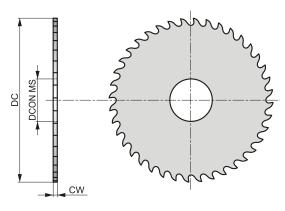

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.1 P2.2 P2.3 P3.2 P3.3 P4.1 P4.2 P3.1 P4.3 M1.1 M1.2 ■ 46 X ■ 52 X ■ 54 X ■ 40 X 35 X ■ 31 X ■ 29 X 24 X **20** X ■ 18 X ■ 15 X ■ 12 X ■ 41 X ■ 35 X K2.1 M2.1 **M2.2** M3.1 M3.2 **M3.3** M4.1 **K1.1 K1.2** K1.3 K2.2 K2.3 K3.1 ■37 X ■30 X **23** X ■20 X ■18 X ■ 10 X ■ 30 X **22** X ■ 17 X ■ 49 X ■ 40 X ■ 32 X ■ 44 X ■33 X K3.3 K4.1 K4.3 K4.4 K4.5 **N1.1 N1.2** N1.3 **N2.1** N2.2 ■27 X ■ 40 X ■30 X ■22 X ■19 X ■ 46 X ■ 34 X ■ 27 X ■83 X ■ 42 X ■37 X ■ 16 X ■ 62 X ■ 42 X **N2.3** N3.1 N3.3 N3.2 N4.1 **S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2** ■ 27 X 44 X **25** X ■ 13 X ■ 44 S ■30 V **20** W ■ 15 W **20** W ■14 S ■ 15 W ■ 10 S ■ 12 W **8** S

	DC	CW	DCON MS	NOF
	(MM)	(MM)	(MM)	
D20050.0X4.0	50.00	4.0	16.00	16
D20050.0X5.0	50.00	5.0	16.00	16
D20063.0X6.0	63.00	6.0	22.00	18
D20063.0X8.0	63.00	8.0	22.00	18
D20080.0X6.0	80.00	6.0	27.00	20
D20080.0X8.0	80.00	8.0	27.00	20
D20080.0X10.0	80.00	10.0	27.00	18
D200100.0X8.0	100.00	8.0	32.00	22
D200100.0X10.0	100.00	10.0	32.00	22
D200100.0X12.0	100.00	12.0	32.00	20
D200100.0X14.0	100.00	14.0	32.00	20
D200100.0X16.0	100.00	16.0	32.00	20
D200125.0X10.0	125.00	10.0	32.00	24
D200125.0X12.0	125.00	12.0	32.00	22

Дисковая фреза из быстрорежущей стали с кобальтом

Конструкция фрезы имеет малый шаг зубьев с трехсторонней геометрией для обработки глубоких пазов или отрезки заготовок. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

HSS-E	28-44 NOF	λ 15°
γ 10°	Bright	DC js16
DIN 885A		


Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.1 P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 ■ 46 X ■ 52 X ■54 X ■ 40 X 35 X ■31 X **29** X 24 X **20** X ■ 18 X ■ 15 X ■ 12 X ■ 41 X ■ 35 X M2.1 **M2.2** M3.1 M3.2 M3.3 M4.1 K1.1 K1.2 K1.3 K2.1 K2.2 K2.3 K3.1 K3.2 ■ 37 X ■30 X **23** X **20** X ■ 18 X ■ 10 X ■ 30 X **22** X ■ 17 X ■49 X ■ 40 X ■32 X ■ 44 X ■ 33 X K4.1 K4.2 K4.3 K4.4 K5.1 **N1.1** N1.2 N1.3 N2.1 **N2.2** ■ 27 X ■40 X ■30 X ■ 22 X ■ 19 X ■16 X ■ 46 X ■34 X ■ 27 X ■83 X ■37 X ■ 62 X ■ 42 X ■ 42 X N3.1 N3.2 **N2.3** N3.3 N4.1 **S1.1 S1.2 S1.3 S2.2 S3.1 S3.2 S4.1 S4.2 S2.1** ■ 27 X 44 X ■25 X ■ 13 X **44** S ■ 30 V **20** W ■ 15 W **20** W ■ 14 S ■ 15 W ■ 10 S ■ 12 W **8** S

	DC.	CW	DCONING	NOF
	DC	CW	DCON MS	NOF
	(MM)	(MM)	(MM)	
D76363.0X1.6	63.00	1.6	22.00	32
D76363.0X2.0	63.00	2.0	22.00	32
D76363.0X2.5	63.00	2.5	22.00	32
D76363.0X3.0	63.00	3.0	22.00	28
D76363.0X3.5	63.00	3.5	22.00	28
D76380.0X2.0	80.00	2.0	27.00	36
D76380.0X2.5	80.00	2.5	27.00	36
D76380.0X3.0	80.00	3.0	27.00	32
D76380.0X3.5	80.00	3.5	27.00	32
D763100.0X2.0	100.00	2.0	32.00	44
D763100.0X3.0	100.00	3.0	32.00	40
D763125.0X2.0	125.00	2.0	32.00	44
D763125.0X3.0	125.00	3.0	32.00	44

Дисковая фреза из быстрорежущей стали

Конструкция фрезы имеет крупный шаг зубьев с односторонней геометрией для обработки глубоких пазов или отрезки заготовок. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

HSS

15°

Bright

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

		,			,	111						1. ,	
P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 40 Q	■ 45 Q	■ 46 Q	■34 Q	■30 Q	■ 29 P	■ 24 P	■ 18 P	∠ 14 P	■ 12 P	■ 12 P	■ 10 P	■ 12 P	■ 10 P
K1.1	K1.2	K1.3	K2.1	K2.2	K3.1	K3.2	K4.1	K4.2	K5.1	K5.2	N1.1	N1.2	N1.3
■ 40 Q	■30 Q	■ 22 Q	■37 Q	■30 Q	■33 Q	■25 Q	■30 P	■ 23 P	■34 Q	■ 26 Q	■ 600 R	■ 450 R	■300 R
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1							
■ 769 R	■692 R	■ 500 R	■339 R	■ 200 R	■ 100 Q	■ 60 R							

	DC	CW	DCON MS	NOF
	(MM)	(MM)	(MM)	
D74550.0X.5	50.00	0.5	13.00	48
D74550.0X.6	50.00	0.6	13.00	48
D74550.0X.8	50.00	0.8	13.00	40
D74550.0X1.0	50.00	1.0	13.00	40
D74550.0X1.2	50.00	1.2	13.00	40
D74550.0X1.5	50.00	1.5	13.00	32
D74550.0X1.6	50.00	1.6	13.00	32
D74550.0X2.0	50.00	2.0	13.00	32
D74563.0X.5	63.00	0.5	16.00	64
D74563.0X.6	63.00	0.6	16.00	48
D74563.0X.8	63.00	0.8	16.00	48
D74563.0X1.0	63.00	1.0	16.00	48
D74563.0X1.2	63.00	1.2	16.00	40
D74563.0X1.5	63.00	1.5	16.00	40
D74563.0X1.6	63.00	1.6	16.00	40
D74563.0X2.0	63.00	2.0	16.00	40
D74580.0X1.0	80.00	1.0	22.00	48
D74580.0X1.2	80.00	1.2	22.00	48
D74580.0X1.5	80.00	1.5	22.00	48
D74580.0X1.6	80.00	1.6	22.00	48
D74580.0X2.0	80.00	2.0	22.00	40
D74580.0X2.5	80.00	2.5	22.00	40
D74580.0X3.0	80.00	3.0	22.00	40
D745100.0X1.0	100.00	1.0	22.00	64
D745100.0X1.2	100.00	1.2	22.00	64
D745100.0X1.5	100.00	1.5	22.00	48
D745100.0X1.6	100.00	1.6	22.00	48
D745100.0X2.0	100.00	2.0	22.00	48

	DC	CW	DCON MS	NOF
	(MM)	(MM)	(MM)	
D745100.0X2.5	100.00	2.5	22.00	48
D745100.0X3.0	100.00	3.0	22.00	40
D745100.0X4.0	100.00	4.0	22.00	40
D745125.0X1.0	125.00	1.0	22.00	80
D745125.0X1.2	125.00	1.2	22.00	64
D745125.0X1.5	125.00	1.5	22.00	64
D745125.0X1.6	125.00	1.6	22.00	64
D745125.0X2.0	125.00	2.0	22.00	64
D745125.0X2.5	125.00	2.5	22.00	48
D745125.0X3.0	125.00	3.0	22.00	48
D745125.0X4.0	125.00	4.0	22.00	48
D745160.0X1.6	160.00	1.6	32.00	80
D745160.0X2.0	160.00	2.0	32.00	64
D745160.0X2.5	160.00	2.5	32.00	64
D745160.0X3.0	160.00	3.0	32.00	64
D745160.0X4.0	160.00	4.0	32.00	48
D745200.0X1.6	200.00	1.6	32.00	80
D745200.0X2.0	200.00	2.0	32.00	80
D745200.0X2.5	200.00	2.5	32.00	80
D745200.0X3.0	200.00	3.0	32.00	64
D745200.0X4.0	200.00	4.0	32.00	64
D745250.0X2.0	250.00	2.0	32.00	100
D745250.0X2.5	250.00	2.5	32.00	80
D745250.0X3.0	250.00	3.0	32.00	80

N1.1

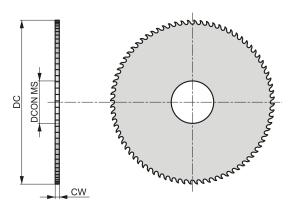
■ 600 R

■ 26 Q

N1.2

■ 450 R

N1.3


■ 300 R

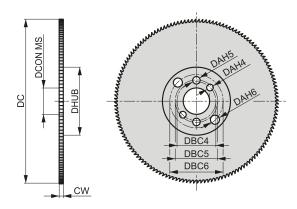
D747

Дисковая фреза из быстрорежущей стали

Конструкция фрезы имеет малый шаг зубьев с односторонней геометрией для обработки глубоких пазов или отрезки заготовок. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.1 P1.2 P1.3 P2.1 P2.2 P3.1 P3.2 P4.1 M1.1 M1.2 M2.1 M2.2 M3.1 M3.2 **■** 12 P **■** 10 P **■** 12 P **■** 10 P

■ 40 Q ■ 45 Q ■ 46 Q ■34 Q ■30 Q **29** P **24** P ■ 18 P **■** 14 P **Z** 12 P K1.2 K5.1 K1.1 K2.1 **K2.2** K3.2 K4.1 ■ 40 Q ■30 Q **22 Q** ■37 Q ■30 Q ■33 Q ■ 25 Q ■ 30 P **23** P ■34 Q N2.1 N2.2 N3.2 N4.1 **N2.3** N3.1 N3.3 ■769 R ■692 R ■500 R ■339 R ■ 200 R ■ 100 Q ■ 60 R


	DC	CW	DCON MS	NOF
	(MM)	(MM)	(MM)	
D74732.0X.3	32.00	0.3	8.00	80
D74732.0X.4	32.00	0.4	8.00	80
D74732.0X.5	32.00	0.5	8.00	80
D74732.0X.6	32.00	0.6	8.00	64
D74732.0X.8	32.00	0.8	8.00	64
D74732.0X1.0	32.00	1.0	8.00	64
D74732.0X1.2	32.00	1.2	8.00	48
D74732.0X1.5	32.00	1.5	8.00	48
D74732.0X1.6	32.00	1.6	8.00	48
D74732.0X2.0	32.00	2.0	8.00	48
D74740.0X.3	40.00	0.3	10.00	100
D74740.0X.4	40.00	0.4	10.00	100
D74740.0X.5	40.00	0.5	10.00	80
D74740.0X.6	40.00	0.6	10.00	80
D74740.0X.8	40.00	0.8	10.00	80
D74740.0X1.0	40.00	1.0	10.00	64
D74740.0X1.2	40.00	1.2	10.00	64
D74740.0X1.5	40.00	1.5	10.00	64
D74740.0X1.6	40.00	1.6	10.00	64
D74740.0X2.0	40.00	2.0	10.00	48
D74750.0X.3	50.00	0.3	13.00	128
D74750.0X.4	50.00	0.4	13.00	100
D74750.0X.5	50.00	0.5	13.00	100
D74750.0X.6	50.00	0.6	13.00	100
D74750.0X.8	50.00	0.8	13.00	80
D74750.0X1.0	50.00	1.0	13.00	80
D74750.0X1.2	50.00	1.2	13.00	80
D74750.0X1.5	50.00	1.5	13.00	64

	DC	CW	DCON MS	NOF
			5 CO. N. 11.5	
	(MM)	(MM)	(MM)	
D74750.0X1.6	50.00	1.6	13.00	64
D74750.0X2.0	50.00	2.0	13.00	64
D74750.0X2.5	50.00	2.5	13.00	64
D74750.0X3.0	50.00	3.0	13.00	48
D74763.0X.5	63.00	0.5	16.00	128
D74763.0X.6	63.00	0.6	16.00	100
D74763.0X.8	63.00	0.8	16.00	100
D74763.0X1.0 D74763.0X1.2	63.00 63.00	1.0 1.2	16.00 16.00	100 80
D74763.0X1.5	63.00	1.5	16.00	80
D74763.0X1.6	63.00	1.6	16.00	80
D74763.0X2.0	63.00	2.0	16.00	80
D74763.0X2.5	63.00	2.5	16.00	64
D74763.0X3.0	63.00	3.0	16.00	64
D74763.0X4.0	63.00	4.0	16.00	64
D74780.0X.5	80.00	0.5	22.00	128
D74780.0X.6	80.00	0.6	22.00	128
D74780.0X.8	80.00	0.8	22.00	128
D74780.0X1.0	80.00	1.0	22.00	100
D74780.0X1.2	80.00	1.2	22.00	100
D74780.0X1.5	80.00	1.5	22.00	100
D74780.0X1.6	80.00	1.6	22.00	100
D74780.0X2.0	80.00	2.0	22.00	80
D74780.0X2.5	80.00	2.5	22.00	80
D74780.0X3.0	80.00	3.0	22.00	80
D74780.0X4.0	80.00	4.0	22.00	64
D747100.0X.5	100.00	0.5	22.00	160
D747100.0X.6	100.00	0.6	22.00	160
D747100.0X.8	100.00	0.8	22.00	128
D747100.0X1.0	100.00	1.0	22.00	128
D747100.0X1.2	100.00	1.2	22.00	128
D747100.0X1.5	100.00	1.5	22.00	100
D747100.0X1.6	100.00	1.6	22.00	100
D747100.0X2.0	100.00	2.0 2.5	22.00	100
D747100.0X2.5 D747100.0X3.0	100.00 100.00	3.0	22.00 22.00	100 80
D747100.0X3.0	100.00	4.0	22.00	80
D747125.0X1.0	125.00	1.0	22.00	160
D747125.0X1.2	125.00	1.2	22.00	128
D747125.0X1.5	125.00	1.5	22.00	128
D747125.0X1.6	125.00	1.6	22.00	128
D747125.0X2.0	125.00	2.0	22.00	128
D747125.0X2.5	125.00	2.5	22.00	100
D747125.0X3.0	125.00	3.0	22.00	100
D747125.0X4.0	125.00	4.0	22.00	100
D747160.0X1.0	160.00	1.0	32.00	160
D747160.0X1.2	160.00	1.2	32.00	160
D747160.0X1.5	160.00	1.5	32.00	160
D747160.0X1.6	160.00	1.6	32.00	160
D747160.0X2.0	160.00	2.0	32.00	128
D747160.0X2.5	160.00	2.5	32.00	128
D747160.0X3.0	160.00	3.0	32.00	128
D747160.0X4.0	160.00	4.0	32.00	100
D747160.0X5.0	160.00	5.0	32.00	100
D747200.0X1.0	200.00	1.0	32.00	200
D747200.0X1.2	200.00	1.2	32.00	200
D747200.0X2.0	200.00	2.0	32.00	160
D747200.0X3.0	200.00	3.0	32.00	128

Дисковая фреза из быстрорежущей стали

Конструкция фрезы имеет крупный шаг зубьев с односторонней геометрией для обработки глубоких пазов или отрезки заготовок. Обработка быстрорежущей стали паром снижает вероятность налипания стружки и повышает стойкость.

18°

■ 769 R

■692 R

■500 R

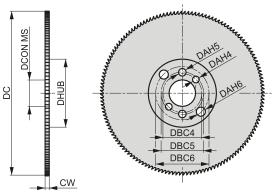
■339 R

■ 200 R

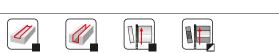
■ 100 Q

■ 60 R

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.


P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 40 Q	■ 45 Q	■ 46 Q	■34 Q	■30 Q	■ 29 P	■ 24 P	■ 18 P	■ 14 P	■ 12 P	■ 12 P	■ 10 P	■ 12 P	■ 10 P
K1.1	K1.2	K1.3	K2.1	K2.2	K3.1	K3.2	K4.1	K4.2	K5.1	K5.2	N1.1	N1.2	N1.3
■ 40 Q	■30 Q	■ 22 Q	■37 Q	■30 Q	■33 Q	■ 25 Q	■30 P	■ 23 P	■34 Q	■ 26 Q	■ 600 R	■ 450 R	■ 300 R
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1							

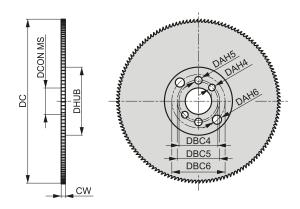

	DC	CW	DCON MS	NOF	Р	DHUB	DAH4	DBC4	DAH5	DBC5	DAH6	DBC6
	(MM)	(мм)	(MM)		(MM)	(мм)						
D752250.0X2.0X128	250.00	2.0	32.00	128	6	100	8	45	9	50	11	63
D752275.0X2.5X110	275.00	2.5	32.00	110	8	100	8	45	9	50	11	63
D752300.0X2.5X160	300.00	2.5	32.00	160	6	100	8	45	9	50	11	63
D752315.0X2.5X160	315.00	2.5	32.00	160	6	100	8	45	9	50	11	63
D752350.0X2.5X180	350.00	2.5	32.00	180	6	120	8	45	9	50	11	63



Дисковая фреза из быстрорежущей стали

Конструкция фрезы имеет крупный шаг зубьев с односторонней геометрией для обработки глубоких пазов или отрезки заготовок. Обработка быстрорежущей стали паром снижает вероятность налипания стружки и повышает стойкость.

P1.2 P1.3 P2.1 P2.2 P3.1 P3.2 P4.1 M1.1 M1.2 M2.1 M2.2 M3.1 M3.2 ■ 40 Q ■ 45 Q ■46 Q ■34 Q ■30 Q **29** P **24** P ■ 18 P **■**14 P **■**12 P **■**12 P **■** 10 P **■** 12 P **■**10 P K5.1 **K2.2** K1.1 K1.2 K1.3 **K2.1** K3.2 K4.1 K5.2 **N1.1 N1.2 N1.3** ■ 40 Q ■30 Q ■ 22 Q ■37 Q ■30 Q ■33 Q ■25 Q ■ 30 P ■ 23 P ■ 34 Q ■26 Q ■ 600 R ■ 450 R ■300 R **N2.2 N2.1 N2.3** N3.1 N3.2 N3.3 N4.1 ■769 R ■692 R ■ 500 R ■339 R ■200 R ■ 100 Q ■ 60 R


Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

	DC	CW	DCON MS	NOF	Р	DHUB	DAH4	DBC4	DAH5	DBC5	DAH6	DBC6
	(MM)	(MM)	(MM)		(MM)	(мм)	(мм)	(мм)	(мм)	(мм)	(мм)	(MM)
D753250.0X2.0	250.00	2.0	32.00	100	8	100	8	45	9	50	11	63
D753300.0X2.5	300.00	2.5	32.00	120	8	100	8	45	9	50	11	63
D753315.0X2.5	315.00	2.5	32.00	120	8	100	8	45	9	50	11	63
D753350.0X2.5	350.00	2.5	32.00	140	8	120	8	45	9	50	11	63

Дисковая фреза из быстрорежущей стали

Конструкция фрезы имеет малый шаг зубьев с односторонней геометрией для обработки глубоких пазов или отрезки заготовок. Обработка быстрорежущей стали паром снижает вероятность налипания стружки и повышает стойкость.

18°

■ 769 R

■692 R

■500 R

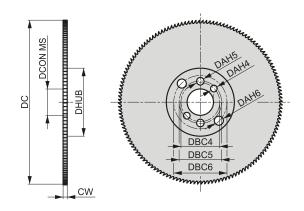
■339 R

■ 200 R

■ 100 Q

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 40 Q	■ 45 Q	■ 46 Q	■34 Q	■30 Q	■ 29 P	■ 24 P	■ 18 P	■ 14 P	■ 12 P	■ 12 P	■ 10 P	■ 12 P	■ 10 P
K1.1	K1.2	K1.3	K2.1	K2.2	K3.1	K3.2	K4.1	K4.2	K5.1	K5.2	N1.1	N1.2	N1.3
■ 40 Q	■30 Q	■ 22 Q	■37 Q	■30 Q	■33 Q	■ 25 Q	■ 30 P	■ 23 P	■34 Q	■ 26 Q	■ 600 R	■ 450 R	■ 300 R
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1							


■ 60 R

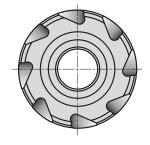
	DC	CW	DCON MS	NOF	Р	DHUB	DAH4	DBC4	DAH5	DBC5	DAH6	DBC6
	(MM)	(мм)	(мм)		(MM)	(мм)	(MM)	(мм)	(MM)	(MM)	(MM)	(MM)
D750200.0X1.8	200.00	1.8	32.00	130	5	100	8	45	9	50	11	63
D750225.0X2.0	225.00	2.0	32.00	140	5	100	8	45	9	50	11	63
D750250.0X2.0	250.00	2.0	32.00	160	5	100	8	45	9	50	11	63
D750275.0X2.5	275.00	2.5	32.00	180	5	100	8	45	9	50	11	63
D750300.0X2.5	300.00	2.5	32.00	180	5	100	8	45	9	50	11	63
D750315.0X2.5	315.00	2.5	32.00	200	5	100	8	45	9	50	11	63
D750350.0X2.5	350.00	2.5	32.00	220	5	120	8	45	9	59	11	63

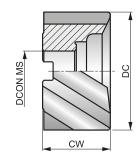
Дисковая фреза из быстрорежущей стали

Конструкция фрезы имеет малый шаг зубьев с односторонней геометрией для обработки глубоких пазов или отрезки заготовок. Обработка быстрорежущей стали паром снижает вероятность налипания стружки и повышает стойкость.

18°

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.


P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 40 Q	■ 45 Q	■ 46 Q	■34 Q	■30 Q	■ 29 P	■ 24 P	■ 18 P	■ 14 P	■ 12 P	■ 12 P	■ 10 P	■ 12 P	■ 10 P
K1.1	K1.2	K1.3	K2.1	K2.2	K3.1	K3.2	K4.1	K4.2	K5.1	K5.2	N1.1	N1.2	N1.3
■ 40 Q	■30 Q	■22 Q	■37 Q	■30 Q	■33 Q	■25 Q	■30 P	■ 23 P	■ 34 Q	■ 26 Q	■ 600 R	■450 R	■300 R
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1							
■769 R	■692 R	■ 500 R	■339 R	■200 R	■ 100 Q	■ 60 R							


	DC	CW	DCON MS	NOF	Р	DHUB	DAH4	DBC4	DAH5	DBC5	DAH6	DBC6
	(MM)	(MM)	(MM)		(MM)							
D751200.0X1.8X160	200.00	1.8	32.00	160	4	100	8	45	9	50	11	63
D751200.0X1.8X200	200.00	1.8	32.00	200	3	100	8	45	9	50	11	63
D751225.0X2.0X180	225.00	2.0	32.00	180	4	100	8	45	9	50	11	63
D751225.0X2.0X220	225.00	2.0	32.00	220	3	100	8	45	9	50	11	63
D751250.0X2.0X200	250.00	2.0	32.00	200	4	100	8	45	9	50	11	63
D751250.0X2.0X250	250.00	2.0	32.00	250	3	100	8	45	9	50	11	63
D751275.0X2.5X220	275.00	2.5	32.00	220	4	100	8	45	9	50	11	63
D751275.0X2.5X280	275.00	2.5	32.00	280	3	100	8	45	9	50	11	63
D751300.0X2.5X220	300.00	2.5	32.00	220	4	100	8	45	9	50	11	63
D751300.0X2.5X300	300.00	2.5	32.00	300	3	100	8	45	9	50	11	63
D751315.0X2.5X240	315.00	2.5	32.00	240	4	100	8	45	9	50	11	63
D751315.0X2.5X320	315.00	2.5	32.00	320	3	100	8	45	9	50	11	63
D751350.0X2.5X280	350.00	2.5	32.00	280	4	120	8	45	9	50	11	63
D751350.0X2.5X350	350.00	2.5	32.00	350	3	120	8	45	9	50	11	63



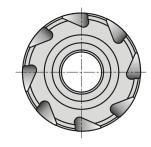
Насадная цилиндрическая фреза из быстрорежущей стали с кобальтом

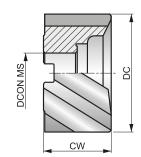
Конструкция фрезы имеет угол наклона спирали 30°. Устанавливается на стандартную оправку для торцевых фрез и подходит для фрезерования большинства материалов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

∠8 A

∠4A

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.


P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 40 C	■ 45 C	■ 46 C	■34 C	■30 C	≥ 27 B	■29 C	■ 24 B	Z 20 B	■18 B	■ 15 B	■ 12 B	■34 C	■ 29 C
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■31 C	■ 25 B	∠ 17 B	∠ 15 B	■ 14 A	■10 A	■ 20 C	■15 C	■ 11 C	■ 37 C	■ 30 C	■ 24 B	■33 C	■ 25 C
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 20 A	■ 30 B	■ 23 B	■ 17 B	■ 14 A	■12 A	■34 B	■ 26 B	■ 20 B	Z 76 E	Z 57 D	■ 38 D	■38 C	■34 C
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■ 25 C	■ 40 C	■ 23 C	■ 12 C	■ 40 C	■ 15 C	■ 17 C	■ 30 B	Z 20 B	■ 10 A	■ 13 A	∠ 7 A	∠ 10 A	≥ 5 A
S4.1	S4.2												


	DC	CW	DCON MS	NOF
	(мм)	(MM)	(MM)	
D40040.0	40.00	32.0	16.00	8
D40050.0	50.00	36.0	22.00	8
D40063 0	63.00	40.0	27.00	8

Насадная цилиндрическая фреза из быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30°. Устанавливается на стандартную оправку для торцевых фрез и подходит для фрезерования большинства материалов. Покрытие TiCN повышает стойкость и производительность.

HSS-E	N	NOF 8
λ 30°	γ 12°	TiCN
DC js16		DIN 1880

N4.2

Z32 C

N4.3

Z 35 C

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.1 P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 ■86 C ■ 96 C ■ 100 C ■74 C ■65 C ■ 57 B ■ 52 C 42 B ■35 B ■31 B ■26 B ■21 B ■ 48 C ■41 C **K2.3** M2.1 **M2.2** M3.1 M3.2 M3.3 M4.1 K1.1 K1.2 K1.3 K2.1 K2.2 K3.1 K3.2 ■ 43 C ■ 35 B ■ 35 B ■30 B ■ 27 A ■ 20 A ■ 35 C ■ 26 C ■ 19 C ■ 62 C ■ 50 C ■40 B ■ 54 C ■ 42 C **N1.1** K4.1 K4.2 K4.3 **K4.4** K4.5 K5.1 N1.2 N1.3 N2.1 **N2.2** ■34 A ■ 50 B ■38 B ■ 28 B ■24 A ■20 A ■57 B ■43 B ■33 B **∠**159 E **■**120 D ■80 D ■80 C **■**72 C

S1.1

■35 B

S1.2

■ 25 B

S1.3

■ 15 A

S2.1

27 A

S2.2

■ 14 A

S3.1

20 A

S3.2

■ 10 A

 N2.3
 N3.1

 ■51 C
 ■84 C

 S4.1
 S4.2

 ■16 A
 ■8 A

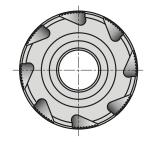
N3.2

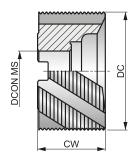
■ 50 C

N3.3

■ 25 C

N4.1


■84 C


	DC	CW	DCON MS	NOF
	(MM)	(MM)	(мм)	
D42040.0	40.00	32.0	16.00	8
D42050.0	50.00	36.0	22.00	8
D42063.0	63.00	40.0	27.00	8

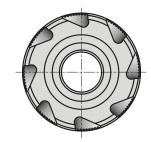
Насадная цилиндрическая фреза из быстрорежущей стали с кобальтом для черновой обработки

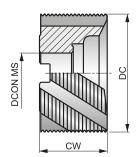
Конструкция фрезы имеет угол наклона спирали 30° и стружколомающий профиль NR. Устанавливается на стандартную оправку для торцевых фрез и подходит для фрезерования большинства материалов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

∠8B

∠4B

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.


P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 40 D	■ 45 D	■ 46 D	■ 34 D	■ 30 D	Z 27 C	■ 29 D	■24 C	Z 20 C	■ 18 C	■ 15 C	■ 12 C	■ 34 D	■ 29 D
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■31 D	■ 25 C	■ 17 C	■ 15 C	■ 14 B	■ 10 B	■ 20 D	■ 15 D	■11 D	■37 D	■ 30 D	■ 24 C	■33 D	■ 25 D
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 20 B	■ 30 C	■23 C	■ 17 C	■ 14 B	■ 12 B	■34 C	■26 C	■ 20 C	Z 76 F	■ 57 E	■ 38 E	■ 38 D	■ 34 D
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■ 25 D	■ 40 D	■ 23 D	■ 12 D	■ 40 D	■ 15 D	■ 17 D	■30 C	≥ 20 C	■ 10 B	■ 13 B	Z 7B	■ 10 B	 5 B
C/ 1	642												


	DC	CW	DCON MS	NOF
	(MM)	(MM)	(MM)	
D40240.0	40.00	32.0	16.00	6
D40250.0	50.00	36.0	22.00	6
D40263.0	63.00	40.0	27 00	8

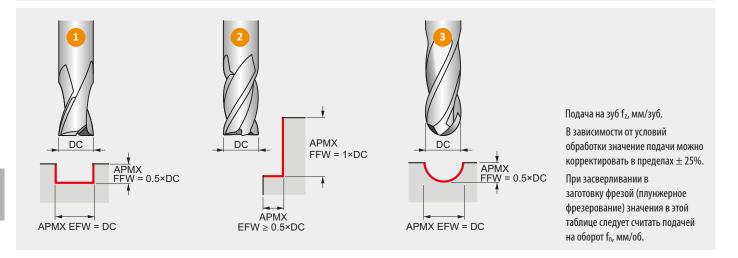
Насадная цилиндрическая фреза из быстрорежущей стали с кобальтом для черновой обработки

Конструкция фрезы имеет угол наклона спирали 30° и стружколомающий профиль NR. Устанавливается на стандартную оправку для торцевых фрез и подходит для фрезерования большинства материалов. Покрытие TiCN повышает стойкость и производительность.

HSS-E	NR	NOF 6-8
<mark>λ</mark> 30°	γ 12°	TiCN
DC js16		DIN 1880

■8B

■ 16 B



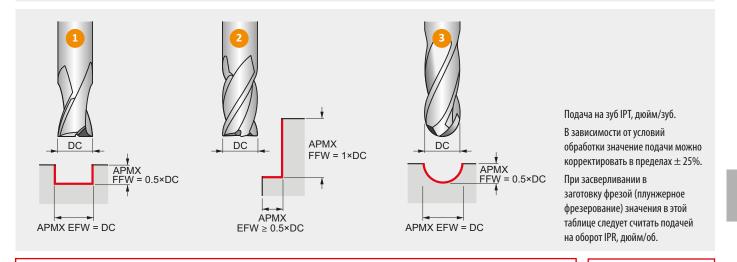
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 86 D	■96 D	■ 100 D	■74 D	■65 D	■57 C	■52 D	■ 42 C	■35 C	■31 C	■ 26 C	■ 21 C	■ 48 D	■ 41 D
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 43 D	■35 C	■35 C	■30 C	■ 27 B	■ 20 B	■35 D	■26 D	■ 19 D	■ 62 D	■ 50 D	■ 40 C	■ 54 D	■ 42 D
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 34 B	■50 C	■38 C	■ 28 C	■ 24 B	■ 20 B	■ 57 C	■ 43 C	■33 C	■ 159 F	■ 120 E	■ 80 E	■80 D	■72 D
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■ 51 D	■84 D	■ 50 D	■ 25 D	■84 D	Z 32 D	Z 35 D	■ 35 C	■ 25 C	■ 15 B	■27 B	■14 B	■ 20 B	■ 10 B
S4.1	S4.2												

	DC	CW	DCON MS	NOF
	(MM)	(MM)	(MM)	
D42240.0	40.00	32.0	16.00	6
D42250.0	50.00	36.0	22.00	6
D42263.0	63.00	40.0	27.00	8

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ – ПОДАЧА НА ЗУБ

Как использовать таблицу определения подачи на зуб (f_z) :


- 1. Определение индекса подачи (например, 48С, где "С" это индекс подачи)
- 2. Определение ближайшего диаметра фрезы по верхней строке таблицы.
- 3. Выбор строки с индексом подачи в первой колонке таблицы.
- 4. В ячейке на пересечении выбранных параметров будет значение подачи на зуб фрезы (f_z) .

ТОЛЬКО ДЛЯ МОНОЛИТНЫХ ФРЕЗ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ

			ø DC, mm																	
		1.00	2.00	3.00	4.00	5.00	6.00	8.00	10.00	12.00	16.00	20.00	25.00	28.00	32.00	36.00	40.00	63.00	80.00	100.00
	Α	0.002	0.003	0.003	0.005	0.005	0.005	0.007	0.009	0.011	0.015	0.018	0.023	0.027	0.030	0.033	0.034	0.043	0.045	0.042
	В	0.003	0.004	0.004	0.006	0.006	0.007	0.009	0.012	0.014	0.018	0.023	0.029	0.033	0.038	0.041	0.043	0.054	0.057	0.052
9,	C	0.004	0.004	0.005	0.007	0.008	0.008	0.011	0.015	0.017	0.023	0.029	0.036	0.042	0.047	0.051	0.054	0.067	0.071	0.065
мм/зуб	D	0.005	0.006	0.006	0.009	0.010	0.010	0.014	0.018	0.022	0.029	0.036	0.045	0.052	0.059	0.064	0.067	0.084	0.089	0.082
396, 1	E	0.006	0.007	0.008	0.011	0.012	0.013	0.017	0.023	0.027	0.036	0.045	0.056	0.065	0.074	0.080	0.084	0.105	0.111	0.102
	F	0.007	0.008	0.010	0.013	0.014	0.016	0.020	0.028	0.032	0.043	0.054	0.067	0.078	0.089	0.096	0.101	0.126	0.133	0.122
Подача на	G	0.009	0.010	0.012	0.016	0.017	0.019	0.024	0.033	0.039	0.052	0.065	0.081	0.094	0.107	0.115	0.121	0.151	0.160	0.147
2	Н	0.010	0.012	0.014	0.019	0.021	0.022	0.029	0.040	0.047	0.062	0.078	0.097	0.112	0.128	0.138	0.145	0.181	0.192	0.176
	ı	0.012	0.015	0.017	0.023	0.025	0.027	0.035	0.048	0.056	0.075	0.093	0.116	0.135	0.153	0.166	0.174	0.218	0.230	0.212
	J	0.015	0.017	0.020	0.027	0.030	0.032	0.042	0.057	0.067	0.090	0.112	0.139	0.162	0.184	0.199	0.209	0.261	0.276	0.254

Значения в таблице актуальны только для концевых и насадных цилиндрических фрез.

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ – ПОДАЧА НА ЗУБ

Как использовать таблицу определения подачи на зуб IPT:

- 1. Определение индекса подачи (например, 157С, где "С" это индекс подачи)
- 2. Определение ближайшего диаметра фрезы по верхней строке таблицы.
- 3. Выбор строки с индексом подачи в первой колонке таблицы.
- 4. В ячейке на пересечении выбранных параметров будет значение подачи на зуб фрезы IPT.

ТОЛЬКО ДЛЯ МОНОЛИТНЫХ ФРЕЗ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ

										ø	DC, дюй	im								
		1/16	3/32	1/8	5/32	3/16	7/32	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1	1 1/8	1 1/4	1 1/2
		.0625	.0938	.1250	.1563	.1875	.2188	.2500	.3125	.3750	.4375	.5000	.5625	.6250	.7500	.8750	1.0000	1.1250	1.2500	1.5000
	A	.0001	.0001	.0001	.0002	.0002	.0002	.0002	.0003	.0004	.0004	.0005	.0006	.0006	.0007	.0008	.0009	.0011	.0012	.0013
9	В	.0001	.0002	.0002	.0002	.0002	.0002	.0003	.0004	.0004	.0005	.0006	.0007	.0007	.0009	.0011	.0012	.0014	.0015	.0017
зуб, дюйм/зуб	C	.0002	.0002	.0002	.0003	.0003	.0003	.0004	.0004	.0005	.0006	.0007	.0008	.0009	.0011	.0013	.0015	.0017	.0019	.0020
, OH	D	.0002	.0002	.0002	.0004	.0004	.0004	.0004	.0006	.0007	.0008	.0009	.0010	.0011	.0013	.0017	.0019	.0021	.0023	.0026
	E	.0002	.0003	.0003	.0004	.0005	.0005	.0006	.0007	.0008	.0010	.0011	.0013	.0014	.0017	.0020	.0023	.0027	.0029	.0032
Подача на	F	.0003	.0003	.0004	.0005	.0006	.0006	.0007	.0008	.0010	.0012	.0014	.0016	.0017	.0020	.0024	.0028	.0032	.0035	.0039
одан	G	.0004	.0004	.0005	.0006	.0007	.0007	.0008	.0009	.0012	.0014	.0017	.0019	.0020	.0024	.0030	.0033	.0039	.0042	.0046
=	Н	.0004	.0005	.0006	.0007	.0008	.0008	.0009	.0011	.0014	.0017	.0020	.0022	.0024	.0029	.0035	.0040	.0046	.0050	.0056
	I	.0005	.0006	.0007	.0009	.0010	.0010	.0011	.0014	.0017	.0020	.0024	.0027	.0030	.0035	.0043	.0048	.0056	.0060	.0067
	J	.0006	.0007	.0008	.0011	.0012	.0012	.0014	.0017	.0020	.0024	.0028	.0032	.0035	.0042	.0051	.0058	.0067	.0072	.0080

Значения в таблице актуальны только для концевых и насадных цилиндрических фрез.

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ – ПОПРАВОЧНЫЕ КОЭФФИЦИЕНТЫ

1 Фрезерование паза

Поправочные коэффициенты для скорости резания V и подачи на зуб f_z в зависимости от глубины резания.

APMX FFW / DC	25 %	50%	100%	150 %
(X.V	1.25	1.00	0.75	0.50
x.f ⇒	1.25	1.00	0.75	0.50

2 Фрезерование уступа

Поправочные коэффициенты для скорости резания V и подачи на зуб f_z в зависимости от ширины фрезерования (в % от диаметра фрезы).

APMX EFW / DC	5 %	10 %	15 %	20%	25 %	30%	40 %	≥ 50 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.00
x.f ⇒	2.29	1.67	1.40	1.25	1.15	1.09	1.02	1.00

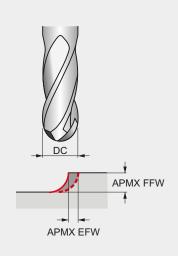
Рекомендуется избегать обработки с шириной фрезерования 50% от диаметра фрезы.

33 Копировальное фрезерование (сферическими фрезами)

Поправочные коэффициенты для скорости резания V в зависимости от глубины резания.

APMX FFW / DC	5 %	10 %	15 %	20%	25 %	30%	40 %	50 %
X.V	2.29	1.67	1.40	1.25	1.15	1.09	1.02	1.00

3b


Значения шага f_е между проходами для достижения теоретической шероховатости.

DC	μт	2	4	8	16	32	63	125	250
2		0.13	0.18	0.25	0.36	0.50	0.70	0.97	1.32
3		0.15	0.22	0.31	0.44	0.62	0.86	1.20	1.66
4		0.18	0.25	0.36	0.50	0.71	1.00	1.39	1.94
5		0.20	0.28	0.40	0.56	0.80	1.12	1.56	2.18
6		0.22	0.31	0.44	0.62	0.87	1.22	1.71	2.40
8		0.25	0.36	0.51	0.71	1.01	1.41	1.98	2.78
10		0.28	0.40	0.57	0.80	1.13	1.58	2.22	3.12
12		0.31	0.44	0.62	0.88	1.24	1.73	2.44	3.43
14	y /i // i /	0.33	0.47	0.67	0.95	1.34	1.87	2.63	3.71
16		0.36	0.51	0.72	1.01	1.43	2.00	2.82	3.97
18		0.38	0.54	0.76	1.07	1.52	2.13	2.99	4.21
20		0.40	0.57	0.80	1.13	1.60	2.24	3.15	4.44
22	→ f _e ←	0.42	0.59	0.84	1.19	1.68	2.35	3.31	4.66
25	- 'e -	0.45	0.63	0.89	1.26	1.79	2.51	3.53	4.97
28		0.47	0.67	0.95	1.34	1.89	2.65	3.73	5.27

Указанные значения шага измеряются только в мм.

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ – ПОПРАВОЧНЫЕ КОЭФФИЦИЕНТЫ

Как использовать таблицу определения поправочного коэффициента для подачи на зуб (f_z) при копировальном фрезеровании:

- Определение ближайшего значения к выбранной ширине фрезерования в % от диаметра фрезы (APMX EFW) по верхней строке таблицы.
- 2. Определение ближайшего значения к выбранной глубине резания в % от диаметра фрезы (APMX FFW) по левому столбцу таблицы.
- 3. В ячейке на пересечении выбранных параметров будет значение поправочного коэффициента для подачи на зуб фрезы (f_z) .

Пример для копировального фрезерования:

- 1. Применение сферической фрезы Ø8 мм с глубиной резания 0.8 мм (APMX FFW) с целью получения поверхности с шероховатостью 32 мкм.
- 2. Поправочный коэффициент для скорости резания при глубине резания 10% от диаметра фрезы = 1.67 (таблица 3a).
- 3. Шаг между проходами для достижения теоретической шероховатости 32 мкм = 1.01 мм (таблица 3b).
- 4. Поправочный коэффициент для подачи на зуб при глубине резания 10% и ширине фрезерования 1.01 / 8 = 12.6% определяется по таблице 3с и в данном случае будет = 2.33.

Поправочные коэффициенты для подачи на зуб f₂ в зависимости от ширины фрезерования АРМХ ЕFW и глубины резания АРМХ FFW (в % от диаметра фрезы).

APMX FFW	APMX EFW	5 %	10%	15 %	20%	25 %	30 %	35%	40 %	50 %
5%		5.26	3.82	3.21	2.87	2.65	2.50	2.40	2.34	2.29
10%		3.82	2.78	2.33	2.08	1.92	1.82	1.75	1.70	1.67
15%		3.21	2.33	1.96	1.75	1.62	1.53	1.47	1.43	1.40
20%		2.87	2.08	1.75	1.56	1.44	1.36	1.31	1.28	1.25
25 %	x.f	2.65	1.92	1.62	1.44	1.33	1.26	1.21	1.18	1.15
30%	\Longrightarrow	2.50	1.82	1.53	1.36	1.26	1.19	1.14	1.11	1.09
35%		2.40	1.75	1.47	1.31	1.21	1.14	1.10	1.07	1.05
40 %		2.34	1.70	1.43	1.28	1.18	1.11	1.07	1.04	1.02
45 %		2.31	1.68	1.41	1.26	1.16	1.10	1.05	1.03	1.01
50 %		2.29	1.67	1.40	1.25	1.15	1.09	1.05	1.02	1.00

Для повышения качества обрабатываемой поверхности инструмент следует наклонять по отношению к поверхности заготовки под углом 10...15°.

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ – ПОДАЧА НА ЗУБ

Как использовать таблицу определения подачи на зуб (f_z):

- 1. Определение индекса подачи (например, 40V, где "V" это индекс подачи)
- 2. Определение ближайшего диаметра фрезы по верхней строке таблицы.
- 3. Выбор строки с индексом подачи в первой колонке таблицы.
- 4. В ячейке на пересечении выбранных параметров будет значение подачи на зуб фрезы (f_z).

Подача на зуб для фрез: С800, С801, С810, С820, С822, С825, С830, С835, С837, С831, С700, С710, D745, D747, D750, D751, D752, D753, D200, D763.

		ø DC, mm															
		10.0	12.0	16.0	20.0	25.0	32.0	38.0	50.0	63.0	80.0	100.0	125.0	160.0	200.0	300.0	350.0
	Р	-	_	_	_	-	0.200	-	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
	Q	_	_	_	_	_	0.040	_	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
	R	_	_	_	_	_	0.600	-	0.600	0.600	0.600	0.600	0.600	0.600	0.600	0.600	0.600
Подача на зуб, мм/зуб	S	0.020	0.020	0.020	0.040	0.040	0.040	0.040	0.050	0.050	0.060	0.070	0.080	0.090	0.100	0.100	0.100
, MN	T	0.020	0.020	0.030	0.050	0.050	0.050	0.060	0.060	0.060	_	-	_	_	_	_	_
a 3y(U	0.030	0.030	0.030	0.050	0.060	0.060	0.060	0.060	0.060	_	_	_	_	_	_	_
Ha H	V	0.030	0.030	0.040	0.060	0.060	0.060	0.070	0.070	0.070	0.080	0.090	0.100	0.110	0.120	0.120	0.120
Пода	W	0.040	0.050	0.050	0.060	0.060	0.070	0.070	0.070	0.070	0.090	0.100	0.110	0.110	0.120	0.120	0.120
	X	0.050	0.050	0.060	0.070	0.080	0.100	0.110	0.110	0.110	0.110	0.110	0.120	0.130	0.140	0.140	0.140
	Υ	0.060	0.060	0.070	0.090	0.100	0.110	0.130	0.130	_	_	_	_	_	_	_	_
	Z	0.070	0.070	0.090	0.110	0.120	0.110	0.150	_	_	_	-	_	_	_	_	_

ДИСКОВЫЕ ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ – ВЫБОР ШАГА

Выбор шага дисковых фрез D750, D751, D752, D753

		Спл	ошное сеч	ение загот	овки									
t		Шаг дисковой фрезы <i>Р</i>												
		2.5	3	4	5	6	8							
	4		P M	N K										
	6			P M	N K									
	8				P M	N K								
Диаметр <i>t</i>	10				P M	N K								
аме	15					P M	N K							
Д	20					P M	N K							
	30						P M							
	40													
	60													

